0000000000033576

AUTHOR

A. Basharina-freshville

Measurement of the double-βdecay half-life ofNd150and search for neutrinoless decay modes with the NEMO-3 detector

The half-life for double-{beta} decay of {sup 150}Nd has been measured by the NEMO-3 experiment at the Modane Underground Laboratory. Using 924.7 days of data recorded with 36.55 g of {sup 150}Nd, we measured the half-life for 2{nu}{beta}{beta} decay to be T{sub 1/2}{sup 2{nu}}=(9.11{sub -0.22}{sup +0.25}(stat.){+-}0.63(syst.))x10{sup 18} yr. The observed limit on the half-life for neutrinoless double-{beta} decay is found to be T{sub 1/2}{sup 0{nu}}>1.8x10{sup 22} yr at 90% confidence level. This translates into a limit on the effective Majorana neutrino mass of <4.0-6.3 eV if the nuclear deformation is taken into account. We also set limits on models involving Majoron emission, right-hand…

research product

Results of the search for neutrinoless double-βdecay inMo100with the NEMO-3 experiment

The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $\beta$ ($0\nu\beta\beta$) decay. We report final results of a search for $0\nu\beta\beta$ decays with $6.914$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$\cdot$yr. We perform a detailed study of the expected background in the $0\nu\beta\beta$ signal region and find no evidence of $0\nu\beta\beta$ decays in the data. The level of observed background in the $0\nu\beta\beta$ signal region $[2.8-3.2]$ MeV is $0.44 \pm 0.13$ counts/yr/kg, and no events are obs…

research product

Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of $\rm ^{207}Bi$ and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.

research product

Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector

Using 9.4 g of Zr-96 and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg yr, the obtained 2vbb decay half-life measurement is [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10^19 yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2vbb half-life and is 0.049 +/- 0.002. Constraints on 0vbb decay have also been set.

research product

Final results on $${}^\mathbf{82 }{\hbox {Se}}$$ 82Se double beta decay to the ground state of $${}^\mathbf{82 }{\hbox {Kr}}$$ 82Kr from the NEMO-3 experiment

Using data from the NEMO-3 experiment, we have measured the two-neutrino double beta decay ($$2\nu \beta \beta $$ 2νββ ) half-life of $$^{82}$$ 82 Se as $$T_{\smash {1/2}}^{2\nu } \!=\! \left[ 9.39 \pm 0.17\left( \text{ stat }\right) \pm 0.58\left( \text{ syst }\right) \right] \times 10^{19}$$ T1/22ν=9.39±0.17stat±0.58syst×1019 y under the single-state dominance hypothesis for this nuclear transition. The corresponding nuclear matrix element is $$\left| M^{2\nu }\right| = 0.0498 \pm 0.0016$$ M2ν=0.0498±0.0016 . In addition, a search for neutrinoless double beta decay ($$0\nu \beta \beta $$ 0νββ ) using 0.93 kg of $$^{82}$$ 82 Se observed for a total of 5.25 y has been conducted and no evide…

research product

Detailed studies of $$^{100}$$ 100 Mo two-neutrino double beta decay in NEMO-3

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( \text{ syst }\right) \right] \times 10^{18}$$ T1/2=6.81±0.01stat-0.40+0.38syst×1018 year. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $$5\times 10^5$$ 5×105 events and a signal-to-background ratio of $$\sim $$ ∼ 80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limit…

research product

Measurement of theββDecay Half-Life ofTe130with the NEMO-3 Detector

This Letter reports results from the NEMO-3 experiment based on an exposure of 1275 days with 661g of 130Te in the form of enriched and natural tellurium foils. With this data set the double beta decay rate of 130Te is found to be non-zero with a significance of 7.7 standard deviations and the half-life is measured to be T1/2 = (7.0 +/- 0.9(stat) +/- 1.1(syst)) x 10^{20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.

research product

Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of …

research product

Search for neutrinoless double-beta decay ofMo100with the NEMO-3 detector

We report the results of a search for the neutrinoless double-$\beta$ decay (0$\nu\beta\beta$) of $^{100}$Mo, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg.y, no evidence for the 0$\nu\beta\beta$ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of $T_{1/2}(0\nu\beta\beta)>1.1 \times 10^{24}$ years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the Nuclear Matrix Elements this corresponds to an upper limit on the Majorana effective neutrino mass of $ < 0.3-0.8$ eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0$…

research product