0000000000033679
AUTHOR
Alison Donnelly
European phenological response to climate change matches the warming pattern
Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-an…
Surviving in a warmer world: environmental and genetic responses
There are numerous reports in the literature of advancing trends in phenophases of plants, insects and birds attributed to rising temperature resulting from human-driven climate warming. One mechanism that enables a population to respond rapidly to changes in the environ- ment is termed phenotypic plasticity. This plasticity grants a degree of flexibility to enable the tim- ing of developmental stages to coincide with resource availability. If, however, environmental con- ditions exceed the plastic limits of an organism, evolutionary change may be necessary in order to ensure continued survival of their populations. We review evidence for phenotypic plasticity and genetic adaptation in phen…