0000000000033902
AUTHOR
Yves Goulas
Measurement and correction of atmospheric effects in O<inf>2</inf>-B and O<inf>2</inf>-A absorption bands in the context of sun-induced fluorescence remote sensing
Under sun-light illumination, the shape of the atmospheric oxygen bands (O 2 -B, 687 nm and O 2 -A, 760 nm) of the vegetation radiance is modified by chlorophyll fluorescence. However for far-range measurements, atmospheric effects also modify this shape. In this study, measurements in O 2 -A and O 2 -B absorption bands have been performed at different altitudes up to 3123 m over bare soil and wheat fields. It is observed that bands depth increase significantly with altitude. In O 2 -B band, the total magnitude of variation is of the same order of magnitude as the change induced by vegetation fluorescence, while it is much greater in O 2 -A band. We used MODTRAN 4 to correct measurements fr…
Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission
The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the…
Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level
Imaging and non-imaging spectroscopy employed in the field and from aircraft is frequently used to assess biochemical, structural, and functional plant traits, as well as their dynamics in an environmental matrix. With the increasing availability of high-resolution spectroradiometers, it has become feasible to measure fine spectral features, such as those needed to estimate sun-induced chlorophyll fluorescence (F), which is a signal related to the photosynthetic process of plants. The measurement of F requires highly accurate and precise radiance measurements in combination with very sophisticated measurement protocols. Additionally, because F has a highly dynamic nature (compared with othe…
FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model
International audience; A new model of chlorophyll a fluorescence emission by plant leaves, FluorMODleaf, is presented. It is an extension of PROSPECT, a widely used leaf optical properties model that regards the leaf as a pile of N absorbing and diffusing elementary plates. In FluorMODleaf, fluorescence emission of an infinitesimal layer of thickness dx is integrated over the entire elementary plate. The fluorescence source function is based on the excitation spectrum of diluted isolated thylakoids and on the emission spectra of isolated photosystems, PSI and PSII, which are the main pigment–protein complexes involved in the initial stages of photosynthesis. Scattering within the leaf is p…
Quantitative global mapping of terrestrial vegetation photosynthesis
Although traditional remote sensing systems based on spectral reflectance can already provide estimates of the 'potential' photosynthetic activity of terrestrial vegetation through the quantification of total canopy chlorophyll content or absorbed photosynthetic radiation, the determination of the 'actual' photosynthetic activity of terrestrial vegetation requires information about how the absorbed light is used by plants, such as vegetation fluorescence, using very high spectral resolution spectroscopy in the range 650-800 nm. The Fluorescence Explorer (FLEX) mission, selected in November 2015 as the 8th Earth Explorer by the European Space Agency (ESA), carries the FLORIS spectrometer, wi…
Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing
[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…
Fluorescence estimation in the framework of the CEFLES2 campaign
International audience; Chlorophyll fluorescence (ChF) is a relevant indicator of the actual plant physiological status. In this article different methods to measure ChF from remote sensing are evaluated: The Fraunhofer Line Discrimination (FLD), theFluorescence Radiative Method (FRM) and the improved Fraunhofer Line Discrimination (iFLD). The three methods have been applied to data acquired in the framework of the CarboEurope, FLEX and Sentinel-2 (CEFLES2) campaign in Les Landes, France in September 2007. Comparing with in situ measurements, the results indicate that the methods that provide the best results are the FLD and the iFLD with root mean square errors (RMSEs) of 0.4 and 0.5 mW m-…
Chlorophyll fluorescence emission spectrum inside a leaf
International audience; Chlorophyll a fluorescence can be used as an early stress indicator. Fluorescence is also connected to photosynthesis so it can be proposed for global monitoring of vegetation status from a satellite platform. Nevertheless, the correct interpretation of fluorescence requires accurate physical models. The spectral shape of the leaf fluorescence free of any re-absorption effect plays a key role in the models and is difficult to measure. We present a vegetation fluorescence emission spectrum free of re-absorption based on a combination of measurements and modelling. The suggested spectrum takes into account the photosystem I and II spectra and their relative contributio…
CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands
The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO<sub>2</sub> fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype ai…
Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …
Sun-Induced Chlorophyll Fluorescence I: Instrumental Considerations for Proximal Spectroradiometers
Growing interest in the proximal sensing of sun-induced chlorophyll fluorescence (SIF) has been boosted by space-based retrievals and up-coming missions such as the FLuorescence EXplorer (FLEX). The European COST Action ES1309 “Innovative optical tools for proximal sensing of ecophysiological processes” (OPTIMISE, ES1309; https://optimise.dcs.aber.ac.uk/) has produced three manuscripts addressing the main current challenges in this field. This article provides a framework to model the impact of different instrument noise and bias on the retrieval of SIF; and to assess uncertainty requirements for the calibration and characterization of state-of-the-art SIF-oriented spectroradiom…
The FLuorescence EXplorer Mission Concept-ESA's Earth Explorer 8
In November 2015, the FLuorescence EXplorer (FLEX) was selected as the eighth Earth Explorer mission of the European Space Agency. The tandem mission concept will provide measurements at a spectral and spatial resolution enabling the retrieval and interpretation of the full chlorophyll fluorescence spectrum emitted by the terrestrial vegetation. This paper provides a mission concept overview of the scientific goals, the key objectives related to fluorescence, and the requirements guaranteeing the fitness for purpose of the resulting scientific data set. We present the mission design at the time of selection, i.e., at the end of project phase Phase A/B1, as developed by two independent indus…