0000000000033913

AUTHOR

Ulrich Poschinger

Quantum Computing Experiments with Cold Trapped Ions

research product

Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel

We realize a heat engine using a single electron spin as a working medium. The spin pertains to the valence electron of a trapped $^{40}$Ca$^+$ ion, and heat reservoirs are emulated by controlling the spin polarization via optical pumping. The engine is coupled to the ion's harmonic-oscillator degree of freedom via spin-dependent optical forces. The oscillator stores the work produced by the heat engine and therefore acts as a flywheel. We characterize the state of the flywheel by reconstructing the Husimi $\mathcal{Q}$ function of the oscillator after different engine runtimes. This allows us to infer both the deposited energy and the corresponding fluctuations throughout the onset of oper…

research product

Cryogenic setup for trapped ion quantum computing

We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120~dB reduction of 50~Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less t…

research product

Quantum gate in the decoherence-free subspace of trapped ion qubits

We propose a geometric phase gate in a decoherence-free subspace with trapped ions. The quantum information is encoded in the Zeeman sublevels of the ground-state and two physical qubits to make up one logical qubit with ultra long coherence time. Single- and two-qubit operations together with the transport and splitting of linear ion crystals allow for a robust and decoherence-free scalable quantum processor. For the ease of the phase gate realization we employ one Raman laser field on four ions simultaneously, i.e. no tight focus for addressing. The decoherence-free subspace is left neither during gate operations nor during the transport of quantum information.

research product

Fast separation of two trapped ions

We design fast protocols to separate or recombine two ions in a segmented Paul trap. By inverse engineering the time evolution of the trapping potential composed of a harmonic and a quartic term, it is possible to perform these processes in a few microseconds without final excitation. These times are much shorter than the ones reported so far experimentally. The design is based on dynamical invariants and dynamical normal modes. Anharmonicities beyond the harmonic approximation at potential minima are taken into account perturbatively. The stability versus an unknown potential bias is also studied.

research product

Measurement of Dipole Matrix Elements with a Single Trapped Ion.

We demonstrate a new method for the direct measurement of atomic dipole transition matrix elements based on techniques developed for quantum information purposes. The scheme consists of measuring dispersive and absorptive off-resonant light-ion interactions and is applicable to many atomic species. We determine the dipole matrix element pertaining to the Ca II H line, i.e. the 4$^2$S$_{1/2} \leftrightarrow $ 4$^2$P$_{1/2}$ transition of $^{40}$Ca$^+$, for which we find the value 2.8928(43) ea$_0$. Moreover, the method allows us to deduce the lifetime of the 4$^2$P$_{1/2}$ state to be 6.904(26) ns, which is in agreement with predictions from recent theoretical calculations and resolves a lon…

research product

Phase-stable free-space optical lattices for trapped ions

We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2\% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion pos…

research product

Experimental realization of fast ion separation in segmented Paul traps

We experimentally demonstrate fast separation of a two-ion crystal in a microstructured segmented Paul trap. By the use of spectroscopic calibration routines for the electrostatic trap potentials, we achieve the required precise control of the ion trajectories near the critical point, where the harmonic confinement by the external potential vanishes. The separation procedure can be controlled by three parameters: a static potential tilt, a voltage offset at the critical point, and the total duration of the process. We show how to optimize the control parameters by measurements of ion distances, trap frequencies, and the final motional excitation. We extend the standard measurement technique…

research product

Measuring the heat exchange of a quantum process

Very recently, interferometric methods have been proposed to measure the full statistics of work performed on a driven quantum system [Dorner et al. Phys. Rev. Lett. 110 230601 (2013)] and [Mazzola et al. Phys. Rev. Lett. 110 230602 (2013)]. The advantage of such schemes is that they replace the necessity to make projective measurements by performing phase estimation on an appropriately coupled ancilla qubit. These proposals are one possible route to the tangible experimental exploration of quantum thermodynamics, a subject which is the centre of much current attention due to the current control of mesoscopic quantum systems. In this Letter we demonstrate that a modification of the phase es…

research product

Precise experimental investigation of eigenmodes in a planar ion crystal.

The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals provides the foundation for the use of such structures for quantum simulation purposes. We present a combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that standard pseudopotential theory accurately predicts the positions of the ions and the location of structural transitions between different crystal configurations. However, pseudopotential theory is insufficient to determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant deviations from the experimental data obtained from resolved sideband spectroscopy. Agreement …

research product

Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation

41 pags., 32 figs., 7 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Phonon-to-spin mapping in a system of a trapped ion via optimal control

We propose a protocol for measurement of the phonon number distribution of a harmonic oscillator based on selective mapping to a discrete spin-1/2 degree of freedom. We consider a system of a harmonically trapped ion, where a transition between two long-lived states can be driven with resolved motional sidebands. The required unitary transforms are generated by amplitude-modulated polychromatic radiation fields, where the time-domain ramps are obtained from numerical optimization by application of the chopped random basis algorithm (CRAB). We provide a detailed analysis of the scaling behavior of the attainable fidelities and required times for the mapping transform with respect to the size…

research product

Fast ion swapping for quantum-information processing

We demonstrate a swap gate between laser-cooled ions in a segmented microtrap via fast physical swapping of the ion positions. This operation is used in conjunction with qubit initialization, manipulation, and readout and with other types of shuttling operations such as linear transport and crystal separation and merging. Combining these operations, we perform quantum process tomography of the swap gate, obtaining a mean process fidelity of 99.5(5)%. The swap operation is demonstrated with motional excitations below 0.05(1) quantum for all six collective modes of a two-ion crystal for a process duration of $42\ensuremath{\mu}\mathrm{s}$. Extending these techniques to three ions, we reverse …

research product

Colloquium: Trapped ions as quantum bits -- essential numerical tools

Trapped, laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well known Hamiltonian. In this colloquium, we present powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap. We then delve into solving inverse problems, when optimizing trapping potentials for ions. Our presentation is complemented by a quantum mechanical treatment of…

research product

Observation of the Kibble-Zurek scaling law for defect formation in ion crystals

Traversal of a symmetry-breaking phase transition at finite rates can lead to causally separated regions with incompatible symmetries and the formation of defects at their boundaries, which has a crucial role in quantum and statistical mechanics, cosmology and condensed matter physics. This mechanism is conjectured to follow universal scaling laws prescribed by the Kibble-Zurek mechanism. Here we determine the scaling law for defect formation in a crystal of 16 laser-cooled trapped ions, which are conducive to the precise control of structural phases and the detection of defects. The experiment reveals an exponential scaling of defect formation γ(β), where γ is the rate of traversal of the …

research product

Transmission Microscopy with Nanometer Resolution Using a Deterministic Single Ion Source.

We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0  nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to ma…

research product

Entanglement-Based dc magnetometry with separated ions

We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 g…

research product

Observing the phase space trajectory of an entangled matter wave packet

We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections t…

research product

Scalable Creation of Long-Lived Multipartite Entanglement.

We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in Ca+40, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ=(1/2)(|0000+|1111), and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence o…

research product

Transfer of optical orbital angular momentum to a bound electron

Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from…

research product

Controlling Fast Transport of Cold Trapped Ions

We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

research product

Maximizing the information gain of a single ion microscope using bayes experimental design

We show nanoscopic transmission microscopy, using a deterministic single particle source and compare the resulting images in terms of signal-to-noise ratio, with those of conventional Poissonian sources. Our source is realized by deterministic extraction of laser-cooled calcium ions from a Paul trap. Gating by the extraction event allows for the suppression of detector dark counts by six orders of magnitude. Using the Bayes experimental design method, the deterministic characteristics of this source are harnessed to maximize information gain, when imaging structures with a parametrizable transmission function. We demonstrate such optimized imaging by determining parameter values of one and …

research product

Quantum magnetism of spin-ladder compounds with trapped-ion crystals

Abstract The quest for experimental platforms that allow for the exploration, and even control, of the interplay of low dimensionality and frustration is a fundamental challenge in several fields of quantum many-body physics, such as quantum magnetism. Here, we propose the use of cold crystals of trapped ions to study a variety of frustrated quantum spin ladders. By optimizing the trap geometry, we show how to tailor the low dimensionality of the models by changing the number of legs of the ladders. Combined with a method for selectively hiding ions provided by laser addressing, it becomes possible to synthesize stripes of both triangular and Kagome lattices. Besides, the degree of frustrat…

research product

A single ion as a shot noise limited magnetic field gradient probe

It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport, may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of \Delta B/B_0 ~ 5*10^{-7} over a test distance of 140 \micro m, which can be extended to the mm range, still with sub \micro m resolution. A fast experimental sequence is presented…

research product

Shuttling-Based Trapped-Ion Quantum Information Processing

Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitra…

research product

Fast shuttling of a trapped ion in the presence of noise

We theoretically investigate the motional excitation of a single ion caused by spring-constant and position fluctuations of a harmonic trap during trap shuttling processes. A detailed study of the sensitivity on noise for several transport protocols and noise spectra is provided. The effect of slow spring-constant drifts is also analyzed. Trap trajectories that minimize the excitation are designed combining invariant-based inverse engineering, perturbation theory, and optimal control.

research product