0000000000034739
AUTHOR
F. M. Haas
Continuum Monte Carlo simulation of phase transitions in rod-like molecules at surfaces
Stiff rod-like chain molecules with harmonic bond length potentials and trigonometric bond angle potentials are used to model Langmuir monolayers at high densities. One end of the rod-like molecules is strongly bound to a flat two-dimensional substrate which represents the air-water interface. A ground-state analysis is performed which suggests phase transitions between phases with and without collective uniform tilt. Large-scale off-lattice Monte Carlo simulations over a wide temperature range show in addition to the tilting transition the presence of a strongly constrained melting transition at high temperatures. The latter transition appears to be related to two-dimensional melting of th…
Phase Transitions in Dense Lipid Monolayers Grafted to a Surface: Monte Carlo Investigation of a Coarse-Grained Off-Lattice Model
Semiflexible amphiphilic molecules end-grafted at a flat surface are modeled by a bead-spring chain with stiff bond angle potentials. Constant density Monte Carlo simulations are performed varying temperature, density, and chain length of the molecules, whose effective monomers interact with Lennard-Jones potentials. For not too large densities and low temperatures the monolayer is in a quasi-two-dimensional crystalline state, characterized by uniform tilt of the (stretched) chains. Raising the temperature causes a second-order transition into a (still solid) phase with no tilt. For the first time, finite size scaling concepts are applied to a model of a surfactant monolayer, and it is foun…