0000000000035853
AUTHOR
Markus Hartenstein
Synthesis of hyperbranched poly(tert-butyl acrylate) by self-condensing atom transfer radical polymerization of a macroinimer
Using 2-hydroxyethyl α-bromoisobuty-rate as initiator, atom transfer radical polymerization (ATRP) of tert-butyl acrylate leads to poly(tert-butyl acrylate) (PtBA) with a hydroxyl group at one and a bromine atom at the other end. Esterification of the hydroxyl group of these heterotelechelic polymers with acryloyl chloride yields PtBA (M n = 3060) with a polymerizable double bond at one end and a bromine atom at the other end which can act as an initiator in ATRP (macroinimer). Self-condensing ATRP of such a macroinimer leads to hyperbranched or highly branched PtBA. The polymer was characterized by GPC viscosity measurements. Even at M w = 78800, a rather low polydispersity index of M w M …
Cyclodextrins in polymer synthesis: polymerization of methyl methacrylate under atom-transfer conditions (ATRP) in aqueous solution
Host guest complexes of methyl methacrylate (MMA) and randomly methylated β-cyclodextrin (m-β-CD, 1 a) were polymerized in aqueous medium using atom-transfer radical polymerization. Ethyl 2-bromoisobutyrate (EBIB) was used as an initiator, copper(I) bromide as the catalyst, and bipyridine (bipy) or 4,4′-di-(5-nonyl)-2,2´-bipyridine (dNbipy) as ligands. The unthreading of m-β-CD during the polymerization led to water-insoluble poly(methyl methacrylate) (PMMA). It was found that using dNbipy resulted in higher monomer conversion than using bipy as the ligand under similar conditions. Furthermore, it is shown that the polymerization of MMA under these conditions has a living character. The pol…