0000000000037689

AUTHOR

Karen W. Gripp

showing 4 related works from this author

Phenotypic analysis of individuals with Costello syndrome due to HRAS p.G13C.

2011

Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype-phenotype differences exist, we report the first cohort comparison between 12 Costello syndrome individuals with p…

AdultHeart Defects CongenitalMalemedicine.medical_specialtyAdolescentrasopathy.RASopathyShort statureProto-Oncogene MasArticleProto-Oncogene Proteins p21(ras)Young AdultGermline mutationSettore MED/38 - Pediatria Generale E SpecialisticaCostello syndromePregnancyInternal medicineNeoplasmsGeneticsMedicineHumansHRASChildGenetics (clinical)business.industryloose anagen hairCostello SyndromeMacrocephalyHypertrophic cardiomyopathyBrainInfantgenotype–phenotype correlationmedicine.diseaseDermatologyMagnetic Resonance ImagingMusculoskeletal AbnormalitiesEndocrinologyPhenotypeChild PreschoolFaceMutationFemalemedicine.symptombusinessMultifocal atrial tachycardiaAmerican journal of medical genetics. Part A
researchProduct

Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates.

2020

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cyt…

0301 basic medicineRegulation of gene expressionNeurogenesisRNA-Binding ProteinsTranslation (biology)RNA-binding proteinCell DifferentiationNerve Tissue ProteinsBiologyCell fate determinationGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineNeural Stem CellsNucleocytoplasmic TransportCELF ProteinsHumansProgenitor cell030217 neurology & neurosurgeryCell reports
researchProduct

Computational Prediction of Position Effects of Apparently Balanced Human Chromosomal Rearrangements.

2017

Interpretation of variants of uncertain significance, especially chromosomal rearrangements in non-coding regions of the human genome, remains one of the biggest challenges in modern molecular diagnosis. To improve our understanding and interpretation of such variants, we used high-resolution three-dimensional chromosomal structural data and transcriptional regulatory information to predict position effects and their association with pathogenic phenotypes in 17 subjects with apparently balanced chromosomal abnormalities. We found that the rearrangements predict disruption of long-range chromatin interactions between several enhancers and genes whose annotated clinical features are strongly …

0301 basic medicineCandidate genediagnosis030105 genetics & heredityMedical and Health SciencescytogeneticsTranslocation Geneticchromosomal translocationChromosome Breakpointschromatin conformationbalanced chromosomal rearrangement2.1 Biological and endogenous factorsChromosomes HumanGenetics(clinical)AetiologyGenetics (clinical)In Situ HybridizationIn Situ Hybridization Fluorescencelong-range effectGeneticsGenetics & HeredityGene RearrangementGenomeChromosome MappingBiological SciencesChromatinPosition effectPhenotypeMedical geneticsHPOHumandistal effectmedicine.medical_specialtyChromosome engineeringchromosomal rearrangement/dk/atira/pure/subjectarea/asjc/1300/1311KaryotypeTranslocationChromosomal rearrangementBiologyChromosomesFluorescenceArticleChromosomal Position Effects03 medical and health sciencesGeneticClinical ResearchmedicineGeneticsHumansGenetic Predisposition to DiseaseGeneGenome HumanHuman GenomeGenetic Variation/dk/atira/pure/subjectarea/asjc/2700/2716030104 developmental biologyGene Expression RegulationHuman genomeclinical geneticsAmerican journal of human genetics
researchProduct

De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

2014

Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387)(1-3). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 313 (GSK-3 beta)(4). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3 beta activity(4), and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND…

endocrine systemBlotting WesternMolecular Sequence DataMutantMedizinBiologymedicine.disease_causeArticleAKT3Mice03 medical and health sciences0302 clinical medicineCyclin D2GSK-3GeneticsmedicineAnimalsCyclin D2HumansAbnormalities MultipleExomeMegalencephalyPI3K/AKT/mTOR pathway030304 developmental biology0303 health sciencesMutationBase SequenceSequence Analysis DNASyndromeCell cyclemedicine.diseaseImmunohistochemistryMolecular biologyMegalencephalyMalformations of Cortical DevelopmentPolydactylyElectroporationHEK293 CellsBromodeoxyuridineMicroscopy FluorescenceMutagenesis Site-DirectedFemale030217 neurology & neurosurgeryHydrocephalusNature Genetics
researchProduct