0000000000039100

AUTHOR

V. Mangano

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

research product

Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells

AbstractThis study describes the molecular mechanism by which treatment with 3-AB, a potent inhibitor of PARP, allows human osteosarcoma MG-63 cells to restrict growth and enter differentiation. Our findings show that in MG-63 cells, aberrant gene expression keeps Rb protein constitutively inactivated through hyperphosphorylation and this promotes uncontrolled proliferation of the cells. After 3-AB-treatment, the poly(ADP-ribosyl)ation of nuclear proteins markedly decreases and this results in an increase in both the hypophosphorylated active form of Rb and pRb/E2F complexes. These effects are accompanied by G1 arrest, downregulation of gene products required for proliferation (cyclin D1, β…

research product

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

research product

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

research product

Swift GRBs: The early afterglow spectral energy distribution

We present the first results of a program to systematically study the optical-to-X-ray spectral energy distribution (SED) of Swift GRB afterglows with known redshift. The goal is to study the properties of the GRB explosion and of the intervening absorbing material. In this report we present the preliminary analysis on 23 afterglows. Thanks to Swift, we could build the SED at early times after the GRB (minutes to hours). We derived the Hydrogen column densities and the spectral slopes from the X-ray spectrum. We then constrained the visual extinction by requiring that the combined optical/X-ray SED is due to synchrotron, namely either a single power law or a broken power law with a slope ch…

research product

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

research product

GRB 070311: a direct link between the prompt emission and the afterglow

We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and late multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst …

research product

All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

Made available in DSpace on 2018-11-26T17:45:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-22 Australian Research Council Council of Scientific and Industrial Research of India Department of Science and Technology, India Science AMP; Engineering Research Board (SERB), India Ministry of Human Resource Development, India Spanish Agencia Estatal de Investigacion Vicepresidencia i Conselleria d'Innovacio, Recerca i Turisme Conselleria d'Educacio i Universitat del Govern de les Illes Balears Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana National Science Centre of Poland Swiss National Science Foundation (SNSF) Russian Foundation for Basic Rese…

research product

Tests of General Relativity with GW170817

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

research product

Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…

research product

GRB 050410 and GRB 050412: are they really dark gamma-ray bursts?

We present a detailed analysis of the prompt and afterglow emission of GRB 050410 and GRB 050412 detected by Swift for which no optical counterpart was observed. The 15-150 keV energy distribution of the GRB 050410 prompt emission shows a peak energy at 53 keV. The XRT light curve of this GRB decays as a power law with a slope of alpha=1.06+/-0.04. The spectrum is well reproduced by an absorbed power law with a spectral index Gamma_x=2.4+/-0.4 and a low energy absorption N_H=4(+3;-2)x10^21 cm^(-2) which is higher than the Galactic value. The 15-150 keV prompt emission in GRB 050412 is modelled with a hard (Gamma=0.7+/-0.2) power law. The XRT light curve follows a broken power law with the f…

research product

The flaring afterglow of GRB 050730

We present a detailed spectral and temporal analysis of Swift and XMM-Newton observations of GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with intense flaring activity superimposed. Evidence of flaring activity in the early UVOT optical afterglow, simultaneous with that observed in the X-ray band, was found. Strong spectral evolution in the X-ray energy band during the flaring activity was present.

research product

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

LIGO Scientific Collaboration and Virgo Collaboration: et al.

research product

Rest frame light curves of Swift GRBs

research product

First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …

research product

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…

research product

Constraining the p -Mode– g -Mode Tidal Instability with GW170817

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…

research product

Pile-up correction for the Swift-XRT observations in WT mode

The detector at the focal plane of the Swift X-ray Telescope (XRT) supports four readout modes, automatically changed on board, to cover the dynamical range of fluxes and rapid variability expected from GRB afterglows. The Windowed Timing (WT) mode is used for sources with flux higher than a few mCrab and is obtained by compressing 10 rows into a single row, and then reading out only the central 200 columns of the CCD. Point sources with a rate above ~300 c/s produce severe pile-up in the central region of the Point Spread Function. This paper presents three methods to correct the effects of the pile-up in WT mode. On ground calibration results and data from the very bright GRB 060124 are u…

research product

The advanced Virgo longitudinal control system for the O2 observing run

Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …

research product

Swift Observations of GRB 051109B

We present Swift observations of GRB 051109B, a soft long burst triggered by the Burst Alert Telescope (BAT). The soft photon index of the prompt emission suggest it is a X-ray Flash (XRF) or, at least, a X-ray Rich (XRR) burst. The X-ray lightcurve displays the canonical shape of many other GRBs, a double b roken power law with a small flare superimposed at ~T_0+1500 s, and its extrapolation to early times smoothly joins with the BAT lightcurve. On the basis of the derived optical to X-ray flux ratio, it cannot be classified as a dark burst.

research product

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

research product

Phenoloxidases of different sizes are modulated by LPS inoculation into ciona intestinalis tunic and pharynx

In the present study, to further characterize the pro-phenoloxidase (proPO) and active phenoloxidase (PO) involved in the Ciona intestinalis inflammatory response, tunic and pharynx homogenate supernatants were separated on high pressure liquid chromatography and fractions were assayed for the PO activity before and after LPS inoculation, as well as before and after trypsin treatment which activates proPO. The LPS inoculation per se did not significantly change the basal PO activity of the tunic homogenate supernatant (THS) and pharynx homogenate supernatant (PHS) restricted in two confluent peaks, whereas a significant enhancement was observable after the trypsin treatment. This trypsin ef…

research product

The exceptionally extended flaring activity in the X-ray afterglow of GRB 050730 observed with Swift and XMM-Newton

We present the results of a detailed spectral and temporal analysis of Swift and XMM-Newton observations of the high redshift (z=3.969) GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with superimposed intense flaring activity that extended over more than two orders of magnitude in time. Seven distinct re-brightening events starting from 236 s up to 41.2 ks after the burst were observed. The underlying decay of the afterglow was well described by a double broken power-law model with breaks at t_1= 237 +/- 20 s and t_2 = 10.1 (-2.2) (+4.6) ks. The temporal decay slopes before, between and after these breaks were alpha_1 = 2.1 +/- 0.3, alpha_2 = 0.44 (-0.08) (+0.1…

research product

The Large Observatory For x-ray Timing

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

research product

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …

research product

GW190412: Observation of a binary-black-hole coalescence with asymmetric masses

LIGO Scientific Collaboration and Virgo Collaboration: et al.

research product

Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…

research product

The short GRB 051210 observed by Swift

We report on the short GRB051210 detected by the Swift-BAT. The light curve, on which we focus mainly, shows a hint of extended emission in the BAT energy range, a steep decay of the X-ray emission, without any flattening or break, and two small flares in the first 300 sec. The emission fades out after ~1000 s.

research product

Attributes of flares in Gamma Ray Bursts: sample I

We discuss some of the preliminary results and findings derived from the analysis of a first sample of flares detected by the XRT on board Swift. The analysis shows that the morphology of flares is the one we expect from the collision of ultra-relativistic shells as it happens during the internal shock model proposed by Rees and Meszaros in 1994. Furthermore the Delta(t)/t ratio and the decay-time to rise-time ratio have mean values that are in good agreement with the values observed in the prompt emission pulses that are believed to originate from internal shocks. The conclusion is that the flare analysis favors the internal shock as due to shells that have been ejected by the central engi…

research product

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

research product

A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo

This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s-1 Mpc-1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s-1 Mpc-1. A significant …

research product

All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run

We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…

research product

Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). N…

research product

Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…

research product

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

research product

X-Ray Eclipse Time Delays in 4U2129+47

4U 2129+47 was discovered in the early 80's and classified as an accretion disk corona source due to its broad and partial X-ray eclipses. The 5.24 hr binary orbital period was inferred from the X-ray and optical light curve modulation, implying a late K or M spectral type companion star. The source entered a low state in 1983, during which the optical modulation disappeared and an F8 IV star was revealed, suggesting that 4U 2129+47 might be part of a triple system. The nature of 4U 2129+47 has since been investigated, but no definitive conclusion has been reached. Here, we present timing and spectral analyses of two XMM-Newton observations of this source, carried out in May and June, 2005.…

research product

GW170817: Measurements of Neutron Star Radii and Equation of State

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

research product

Search for GW signals associated with GRBs

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

research product