0000000000040385

AUTHOR

Vittorio Lubicz

showing 22 related works from this author

Nonperturbative renormalization in coordinate space

2003

We present an exploratory study of a gauge-invariant non-perturbative renormalization technique. The renormalization conditions are imposed on correlation functions of composite operators in coordinate space on the lattice. Numerical results for bilinears obtained with overlap and O(a)-improved Wilson fermions are presented. The measurement of the quark condensate is also discussed.

QuarkPhysicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)field theory gauge theory lattice renormalizationFOS: Physical sciencesFísicaParticle Physics - LatticeFermionAtomic and Molecular Physics and OpticsComposite operatorRenormalizationFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - LatticeLattice (order)Non-perturbativeCoordinate spaceMathematical physics
researchProduct

Non-perturbatively renormalised light quark masses from a lattice simulation with Nf=2

2006

Abstract We present results for the light quark masses obtained from a lattice QCD simulation with N f = 2 degenerate Wilson dynamical quark flavours. The sea quark masses of our lattice, of spacing a ≃ 0.06 fm , are relatively heavy, i.e., they cover the range corresponding to 0.60 ≲ M P / M V ≲ 0.75 . After implementing the non-perturbative RI-MOM method to renormalise quark masses, we obtain m ud MS ¯ ( 2 GeV ) = 4.3 ± 0.4 −0 +1.1 MeV , and m s MS ¯ ( 2 GeV ) = 101 ± 8 −0 +25 MeV , which are about 15% larger than they would be if renormalised perturbatively. In addition, we show that the above results are compatible with those obtained in a quenched simulation with a similar lattice.

QuarkPhysicsNuclear and High Energy PhysicsTop quarkParticle physics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyDown quarkTop quark condensateLattice QCD01 natural sciencesBottom quarkNuclear physicsLattice (order)0103 physical sciencesUp quarkHigh Energy Physics::Experiment010306 general physicsNuclear Physics B
researchProduct

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

D–D¯ mixing and new physics: General considerations and constraints on the MSSM

2007

Abstract Combining the recent experimental evidence of D – D ¯ mixing, we extract model-independent information on the mixing amplitude and on its CP-violating phase. Using this information, we present new constraints on the flavour structure of up-type squark mass matrices in supersymmetric extensions of the Standard Model.

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologySuperpartnerCP violationHigh Energy Physics::ExperimentSupersymmetryMass matrixMixing (physics)Standard ModelPhysics Letters B
researchProduct

BK-parameter fromNf=2twisted mass lattice QCD

2011

We present an unquenched Nf=2 lattice computation of the B K parameter which controls K0-K0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wi ...

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::LatticeLattice field theoryHadronElementary particleLattice QCD01 natural sciencesRenormalizationLattice gauge theoryLattice (order)0103 physical sciences010306 general physicsPhysical Review D
researchProduct

Masses and decay constants of D(s)* and B(s)* mesons with Nf=2+1+1 twisted mass fermions

2017

We present a lattice calculation of the masses and decay constants of ${D}_{(s)}^{*}$ and ${B}_{(s)}^{*}$ mesons using the gauge configurations produced by the European Twisted Mass Collaboration (ETMC) with ${N}_{f}=2+1+1$ dynamical quarks at three values of the lattice spacing $a\ensuremath{\sim}(0.06\ensuremath{-}0.09)\text{ }\text{ }\mathrm{fm}$. Pion masses are simulated in the range ${M}_{\ensuremath{\pi}}\ensuremath{\simeq}(210--450)\text{ }\text{ }\mathrm{MeV}$, while the strange and charm sea-quark masses are close to their physical values. We compute the ratios of vector to pseudoscalar masses and decay constants for various values of the heavy-quark mass ${m}_{h}$ in the range $0…

PhysicsMeson010308 nuclear & particles physicsFermion01 natural sciencesPseudoscalar mesonPseudoscalarCrystallographyLattice constantPionLattice (order)0103 physical sciencesHeavy quark effective theoryStatistical physics010306 general physicsPhysical Review D
researchProduct

Up, down, strange and charm quark masses withNf=2+1+1twisted mass lattice QCD

2014

Abstract We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 – 450 MeV , allowing for accurate continuum limit and controlled chiral extrapolation. The quark …

QuarkPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsStrange quarkParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryLattice QCD7. Clean energySigma baryonCharm quarkNuclear physicsPionUp quarkHigh Energy Physics::ExperimentNuclear ExperimentNuclear Physics B
researchProduct

Light meson physics from maximally twisted mass lattice QCD

2009

40 pages, 5 figures, 8 tables, 3 appendix.-- PACS: 11.15.Ha; 12.38.Gc; 12.39.Fe

QuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryMesonHigh Energy Physics::LatticeFOS: Physical sciencesLattice QCD7. Clean energy01 natural sciencessymbols.namesakeHigh Energy Physics - LatticeLattice constantChiral perturbation theoryLattice (order)0103 physical sciences010306 general physicsPhysics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyLight mesonsMeson physicsFísicaFermionLattice QCDTwisted mass quarksQCDStrong interactions3. Good healthSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciLattice QCD; Strong interactions; Meson physics; Twisted mass quarkssymbolsLow energy constantsLagrangian
researchProduct

Kaon weak matrix elements with Wilson fermions

2002

We present results of several numerical studies with Wilson fermions relevant for kaon physics. We compute the B_K parameter by using two different methods and extrapolate to the continuum limit. Our preliminary result is B_K(2 GeV)=0.66(7). Delta I=3/2 K->pi pi matrix elements are obtained by using the next-to-leading order expressions derived in chiral perturbation theory in which the low energy constants are determined by the lattice results computed at unphysical kinematics. From the simulation at beta=6.0 our (preliminary) results read: _{I=2}=0.14(1)(1) GeV^3 and _{I=2}=0.69(6)(6) GeV^3.

PhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesFísicaFermionAtomic and Molecular Physics and OpticsSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - LatticeLow energyLattice (order)High Energy Physics::Experiment
researchProduct

Light Quark Masses from Lattice Quark Propagators at Large Momenta

1999

We compute non-perturbatively the average up-down and strange quark masses from the large momentum (short-distance) behaviour of the quark propagator in the Landau gauge. This method, which has never been applied so far, does not require the explicit calculation of the quark mass renormalization constant. Calculations were performed in the quenched approximation, by using O(a)-improved Wilson fermions. The main results of this study are ml^RI(2GeV)=5.8(6)MeV and ms^RI(2GeV)=136(11)MeV. Using the relations between different schemes, obtained from the available four-loop anomalous dimensions, we also find ml^RGI=7.6(8)MeV and ms^RGI=177(14)MeV, and the MSbar-masses, ml^MS(2GeV)=4.8(5)MeV and …

PhysicsQuarkNuclear and High Energy PhysicsStrange quarkParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryHigh Energy Physics - Lattice (hep-lat)CHIRAL SYMMETRYFOS: Physical sciencesQuenched approximationNONPERTURBATIVE RENORMALIZATION CONSTANTSFermionDYNAMICAL WILSON FERMIONSPartícules (Física nuclear)RenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice gauge theoryHigh Energy Physics::ExperimentOperator product expansionMinimal subtraction schemeNuclear Experiment
researchProduct

Non-perturbative renormalization of lattice operators in coordinate space

2004

We present the first numerical implementation of a non-perturbative renormalization method for lattice operators, based on the study of correlation functions in coordinate space at short Euclidean distance. The method is applied to compute the renormalization constants of bilinear quark operators for the non-perturbative O(a)-improved Wilson action in the quenched approximation. The matching with perturbative schemes, such as MS-bar, is computed at the next-to-leading order in continuum perturbation theory. A feasibility study of this technique with Neuberger fermions is also presented.

PhysicsNuclear and High Energy PhysicsHigh Energy Physics::Latticefield theory gauge theory lattice renormalizationHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesQuenched approximationFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIRenormalizationEuclidean distanceHigh Energy Physics - LatticeOperator (computer programming)Quantum mechanicsFunctional renormalization groupPerturbation theory (quantum mechanics)Coordinate spaceNon-perturbativeMathematical physics
researchProduct

An exploratory lattice study of decays at next-to-leading order in the chiral expansion

2005

Abstract We present the first direct evaluation of Δ I = 3 / 2 K → π π matrix elements with the aim of determining all the low-energy constants at NLO in the chiral expansion. Our numerical investigation demonstrates that it is indeed possible to determine the K → π π matrix elements directly for the masses and momenta used in the simulation with good precision. In this range however, we find that the matrix elements do not satisfy the predictions of NLO chiral perturbation theory. For the chiral extrapolation we therefore use a hybrid procedure which combines the observed polynomial behavior in masses and momenta of our lattice results, with NLO chiral perturbation theory at lower masses. …

PhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionExtrapolation01 natural sciencesLattice (order)0103 physical sciencesPiHigh Energy Physics::ExperimentDirect evaluation010306 general physicsNuclear Physics B
researchProduct

A Theoretical Prediction of the Bs-Meson Lifetime Difference

2000

We present the results of a quenched lattice calculation of the operator matrix elements relevant for predicting the Bs width difference. Our main result is (\Delta\Gamma_Bs/\Gamma_Bs)= (4.7 +/- 1.5 +/- 1.6) 10^(-2), obtained from the ratio of matrix elements, R(m_b)=/=-0.93(3)^(+0.00)_(-0.01). R(m_b) was evaluated from the two relevant B-parameters, B_S^{MSbar}(m_b)=0.86(2)^(+0.02)_(-0.03) and B_Bs^{MSbar}(m_b) = 0.91(3)^(+0.00)_(-0.06), which we computed in our simulation.

PhysicsParticle physicsNONPERTURBATIVE RENORMALIZATIONPhysics and Astronomy (miscellaneous)MesonHigh Energy Physics - Lattice (hep-lat)Analytical chemistryFOS: Physical sciencesPartícules (Física nuclear)Settore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - PhenomenologyOperator matrixMATRIX-ELEMENTSHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)Engineering (miscellaneous)QCD CORRECTIONSTO-LEADING ORDER
researchProduct

B-physics from Nf=2 tmQCD: the Standard Model and beyond

2013

Carrasco, Nuria et al.

QuarkParticle physicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesbottom quark mass01 natural sciencesBottom quarkStandard ModelLattice constantPionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesContinuum (set theory)010306 general physicsNuclear ExperimentPhysicsUnitarity[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaParticle Physics - LatticeLattice QCDB-physicsSM and beyondSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - PhenomenologyB-physics; bottom quark mass; B-meson mixing; SM and beyond[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]B-meson mixingHigh Energy Physics::Experiment
researchProduct

Nonperturbative renormalization constants and light quark masses

2002

We present the results of an extensive non-perturbative calculation of the renormalization constants of bilinear quark operators for the non-perturbatively O(a)-improved Wilson action. The results are obtained at four values of the lattice coupling, by using the RI/MOM and the Ward identities methods. A new non-perturbative renormalization technique, which is based on the study of the lattice correlation functions at short distance in x-space, is also numerically investigated. We then use our non-perturbative determination of the quark mass renormalization constants to compute the values of the strange and the average up/down quark masses. After performing an extrapolation to the continuum …

QuarkPhysicsCouplingNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeContinuum (design consultancy)High Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyExtrapolationDown quarkFOS: Physical sciencesFísicaAtomic and Molecular Physics and OpticsRenormalizationHigh Energy Physics - LatticeLattice (music)High Energy Physics::ExperimentNon-perturbative
researchProduct

Matrix elements of (delta S=2) operators with Wilson fermions

2002

We test the recent proposal of using the Ward identities to compute the K0-K0bar mixing amplitude with Wilson fermions, without the problem of spurious lattice subtractions. From our simulations, we observe no difference between the results obtained with and without subtractions. In addition, from the standard study of the complete set of (delta S=2) operators, we quote the following (preliminary) results (in the MS(NDR) scheme): Bk(2 GeV)=0.70(10), < O7^{3/2}>_{K->pi pi} = 0.10(2)(1) GeV^3, < O8^{3/2}>_{K->pi pi} = 0.49(6)(0) GeV^3.

PhysicsNuclear and High Energy PhysicsHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesFísicaFermionAtomic and Molecular Physics and OpticsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)AmplitudeHigh Energy Physics - LatticeLattice (order)PiMathematical physics
researchProduct

Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA

2013

We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of t…

QuarkStrange quarkParticle physicsNuclear and High Energy PhysicsPhysics beyond the Standard ModelComputationHigh Energy Physics::LatticeFOS: Physical sciencesLattice QCD01 natural sciencesRenormalizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciences010306 general physicsPhysicsHamiltonian matrixUnitarity010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Computer Science::Information RetrievalHigh Energy Physics - Lattice (hep-lat)FísicaLattice QCDSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard ModelBeyond the Standard Model Physics
researchProduct

Renormalization Constants of Quark Operators for the Non-Perturbatively Improved Wilson Action

2004

We present the results of an extensive lattice calculation of the renormalization constants of bilinear and four-quark operators for the non-perturbatively O(a)-improved Wilson action. The results are obtained in the quenched approximation at four values of the lattice coupling by using the non-perturbative RI/MOM renormalization method. Several sources of systematic uncertainties, including discretization errors and final volume effects, are examined. The contribution of the Goldstone pole, which in some cases may affect the extrapolation of the renormalization constants to the chiral limit, is non-perturbatively subtracted. The scale independent renormalization constants of bilinear quark…

PhysicsQuarkNONPERTURBATIVE RENORMALIZATIONNuclear and High Energy PhysicsDiscretizationHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)ExtrapolationFOS: Physical sciencesBilinear interpolationFísicaQuenched approximationRenormalizationHigh Energy Physics - LatticeLattice (order)visual_artvisual_art.visual_art_mediumGoldstoneMathematical physics
researchProduct

Light hadron spectrum, renormalization constants and light quark masses with two dynamical fermions

2004

The results of a preliminary partially quenched (N_f=2) study of the light hadron spectrum, renormalization constants and light quark masses are presented. Numerical simulations are carried out with the LL-SSOR preconditioned Hybrid Monte Carlo with two degenerate dynamical fermions, using the plaquette gauge action and the Wilson quark action at beta = 5.8. Finite volume effects have been investigated employing two lattice volumes: 16^3 x 48 and 24^3 x 48. Configurations have been generated at four values of the sea quark mass corresponding to M_{PS}/M_V ~ 0.6 - 0.8.

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeHadronFOS: Physical sciences01 natural sciences7. Clean energyMass fermionsRenormalizationHybrid Monte CarloHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciencesQuantum chromodynamics; Lattices; Mass fermions010306 general physicsPhysicsFinite volume method010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Degenerate energy levelsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFermionLatticesAtomic and Molecular Physics and OpticsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quantum chromodynamics
researchProduct

Operator product expansion and quark condensate from Lattice QCD in coordinate space

2005

We present a lattice QCD determination of the chiral quark condensate based on a new method. We extract the quark condensate from the operator product expansion of the quark propagator at short euclidean distances, where it represents the leading contribution in the chiral limit. From this study we obtain MS( 2 GeV) = -( 265 +/- 5 +/- 22MeV)(3), in good agreement with determinations of this quantity based on different approaches. The simulation is performed by using the O( a)- improved Wilson action at beta = 6.45 on a volume 32(3) x 70 in the quenched approximation.

QuarkQuantum chromodynamicsPhysicsParticle physicsPhysics and Astronomy (miscellaneous)Field (physics)High Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Lattice (group)FísicaPropagatorFOS: Physical sciencesRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentOperator product expansionCoordinate spaceEngineering (miscellaneous)
researchProduct

The Belle II Physics Book

2019

cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,…

B: semileptonic decayPhysics beyond the Standard ModelHadronelectroproduction [charmonium]General Physics and AstronomyComputingMilieux_LEGALASPECTSOFCOMPUTINGB: radiative decayannihilation [electron positron]7. Clean energy01 natural sciencescharmonium: electroproductionB physicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Z'law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)dark sector searchesPhysicslifetimeradiative decay [B]doublet [Higgs particle]new physicsPhysicsHigh Energy Physics - Lattice (hep-lat)ddc:530Electroweak interactionlepton: flavor: violationhep-phParticle Physics - LatticeMonte Carlo [numerical calculations]electron positron: colliding beamsQuarkoniumasymmetry: CPquarkonium physicselectroweak interaction: penguinHigh Energy Physics - PhenomenologyImproved performancecolliding beams [electron positron]CP violationinterfaceelectroproduction [quarkonium]electroweak precision measurementsnumerical calculations: Monte CarlophysicsParticle Physics - ExperimentperformanceParticle physicsflavor: violation [lepton]reviewhep-latFOS: Physical sciencesBELLEHigh Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Lattice; High Energy Physics - Phenomenologyelectron positron: annihilationquarkonium: electroproductionCP [asymmetry]E(6)Higgs particle: doubletmixing [D0 anti-D0]Theoretical physicsCP: violation: time dependenceHigh Energy Physics - LatticeKEK-B0103 physical sciencesquantum chromodynamicshidden sector [photon]ddc:530composite010306 general physicsColliderParticle Physics - PhenomenologyHigh Energy Physics - Experiment; High Energy Physics - Lattice; High Energy Physics - Phenomenologyphoton: hidden sectorhep-ex010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]C50 Other topics in experimental particle physicsviolation: time dependence [CP]D0 anti-D0: mixingB2TiP530 PhysikExperimental physicsB: leptonic decayCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]penguin [electroweak interaction]leptonic decay [B]semileptonic decay [B]charmparticle identificationexperimental results
researchProduct

B-0-(B)over-bar(0) mixing and decay constants with the non-perturbatively improved action

2001

Several quantities relevant to phenomenological studies of B-0-(B) over bar (0) mixing are computed on the lattice. Our main results are f(Bd) root(B) over cap (Bd) = 206(28) (14)(-00)(+31) MeV, xi = f(Bd) root(B) over capB(x)/f(Bd) root(B) over cap (Bd) = 1.16(7). We also obtain the related quantities f(Bs) root(B) over cap (Bs) - 237(18) (10)(-00)(+34) MeV, f(Bd) = 174(22)(-0-0-00)(+7+5+26) MeV, f(Bs) = 204(15)(-0-0-00)(+7+4+31) MeV, f(Bs)/f(Bd) = 1.17(4)(-1)(+0), f(Bd)/f(Ds) = 0.74(5). After combining our results with the experimental world average Deltam(d)((exp)), we predict Deltam(s) = 15.8(2.1)(3.3) ps(-1). We have also computed the relevant parameters for D-0-(D) over bar (0) mixing…

FIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIB physics gauge theory latticePartícules (Física nuclear)
researchProduct