0000000000040582

AUTHOR

Nicoletta Sanna

showing 4 related works from this author

The Gaia-ESO Survey: The origin and evolution of s-process elements

2018

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…

astro-ph.GAMetallicityFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: diskAstronomi astrofysik och kosmologiAbundance (ecology)QB4600103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesStarsAbundances [Galaxy][SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsDisk [Galaxy]s-processOpen cluster
researchProduct

The GAPS Programme with HARPS-N at TNG XV. A substellar companion around a K giant star identified with quasi-simultaneous HARPS-N and GIANO measurem…

2017

Context. Identification of planetary companions of giant stars is made difficult because of the astrophysical noise, that may produce radial velocity (RV) variations similar to those induced by a companion. On the other hand any stellar signal is wavelength dependent, while signals due to a companion are achromatic. Aims. Our goal is to determine the origin of the Doppler periodic variations observed in the thick disk K giant star TYC 4282-605-1 by HARPS-N at the Telescopio Nazionale Galileo (TNG) and verify if they can be due to the presence of a substellar companion. Methods. Several methods have been used to exclude the stellar origin of the observed signal including detailed analysis of…

Physicsstars: individual: TYC 4282-605-1010308 nuclear & particles physicsFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsPlanetary systemLight curveGiant star01 natural sciencesRadial velocityAmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePlanettechniques: radial velocities0103 physical sciencesThick diskinfrared: stars; planetary systems; stars: individual: TYC 4282-605-1; techniques: radial velocities; Astronomy and Astrophysics; Space and Planetary Scienceinfrared: starsplanetary systems010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Ariel: Enabling planetary science across light-years

2021

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm e…

[SDU] Sciences of the Universe [physics]Earth and Planetary Astrophysics (astro-ph.EP)[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Settore FIS/05 - Astronomia E Astrofisica[SDU]Sciences of the Universe [physics][SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP][SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]FOS: Physical sciencesAstrophysics - Instrumentation and Methods for AstrophysicAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics - Earth and Planetary Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]
researchProduct

Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b - First data from the GIARPS Commissioning

2018

Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO - B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS - N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does …

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)010308 nuclear & particles physicsFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)Astrophysics01 natural sciences7. Clean energyRadial velocityPhotometry (astronomy)StarsAmplitudeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary SciencePlanet0103 physical sciencesHot JupiterSpectroscopy010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics - Earth and Planetary Astrophysics
researchProduct