0000000000040609

AUTHOR

Altti Ala‐korpi

Recognition of N-Alkyl- and N-Aryl-Acetamides by N-Alkyl Ammonium Resorcinarene Chlorides

N-alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra- and intermolecular hydrogen bonds that leads to cavitand-like structures. Depending on the upper-rim substituents, self-inclusion was observed in solution and in the solid state. The self-inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self-included dimers spontaneously reorganize to 1:1 host-guest complexes. These host compounds show an interesting ability to bind a series of N-alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C=O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl(-)) and ammoni…

research product

Cooperative Binding of Divalent Diamides by N-Alkyl Ammonium Resorcinarene Chlorides

N-Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand-like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation-anion circular hydrogen-bonded seam of the hosts, as well as through CH⋅⋅⋅π interactions. The N-alkyl ammonium resorcinarene chlorides cooperatively bind a series of di-acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first bin…

research product