Advanced Glycation End Products: New Clinical and Molecular Perspectives
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression …
The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror
Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon’s secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans’ islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (β) cell dedifferentiati…
Tejido adiposo epicárdico, adiponectina y leptina: Una fuente potencial de riesgo cardiovascular en Enfermedad renal crónica
The importance of cardiometabolic factors in the inception and progression of atherosclerotic cardiovascular disease is increasingly being recognized. Beyond diabetes mellitus and metabolic syndrome, other factors may be responsible in patients with chronic kidney disease (CKD) for the high prevalence of cardiovascular disease, which is estimated to be 5- to 20-fold higher than in the general population. Although undefined uremic toxins are often blamed for part of the increased risk, visceral adipose tissue, and in particular epicardial adipose tissue (EAT), have been the focus of intense research in the past two decades. In fact, several lines of evidence suggest their involvement in athe…
SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in p…
The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium
Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen …
Insulin withdrawal in diabetic kidney disease : What are we waiting for?
The prevalence of type 2 diabetes mellitus worldwide stands at nearly 9.3% and it is estimated that 20–40% of these patients will develop diabetic kidney disease (DKD). DKD is the leading cause of chronic kidney disease (CKD), and these patients often present high morbidity and mortality rates, particularly in those patients with poorly controlled risk factors. Furthermore, many are overweight or obese, due primarily to insulin compensation resulting from insulin resistance. In the last decade, treatment with sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have been shown to be beneficial in renal and cardiovascular targets; however…