0000000000042467

AUTHOR

Altuğ Ozpineci

showing 4 related works from this author

Long-distance structure of the X(3872)

2014

We investigate heavy quark symmetries for heavy meson hadronic molecules, and explore the consequences of assuming the X(3872) and $Z_b(10610)$ as an isoscalar $D\bar D^*$ and an isovector $B\bar B^*$ hadronic molecules, respectively. The symmetry allows to predict new hadronic molecules, in particular we find an isoscalar $1^{++}$ $B\bar B^*$ bound state with a mass about 10580 MeV and the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. Next, we study the $X(3872) \to D^0 \bar D^0\pi^0$ three body decay. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its $J/\psi\pi\pi$ and $J/\psi3\pi$ decays, which are mainly c…

QuarkPhysicsHistoryParticle physicsMesonIsovectorIsoscalarHadronNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesComputer Science ApplicationsEducationJ/psi mesonNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Bound stateHigh Energy Physics::ExperimentNuclear ExperimentX(3872)
researchProduct

Hidden beauty molecules within the local hidden gauge approach and heavy quark spin symmetry

2013

Using a coupled channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-meson interaction with hidden beauty and obtain several new states. Both I = 0 and I = 1 states are analyzed, and it is shown that in the I = 1 sector, the interactions are too weak to create any bound states within our framework. In total, we predict with confidence the existence of six bound states and six more possible weakly bound states. The existence of these weakly bound states depends on the influence of the coupled channel effects.

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsBound statesMeson resonancesHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaGauge (firearms)01 natural sciencesUnitary stateHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound stateMoleculeSpin symmetryNuclear Experiment (nucl-ex)010306 general physicsNuclear Experiment
researchProduct

Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II

2011

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…

Flight directionNuclear and High Energy PhysicsParticle physicsMesonTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energyLuminosityStandard Modellaw.inventionNuclear physicsParticle decaychemistry.chemical_compoundlawTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesInvariant massLimit (mathematics)FermilabCollider010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionSupersymmetryD0 experimentIMesCrystallographychemistryDecay lengthHigh Energy Physics::ExperimentLeptonPhysical Review Letters
researchProduct

Hidden charm and bottom molecular states

2014

We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting heavy quark spin symmetry contains four independent counter-terms. Neglecting $1/m_Q$ corrections, three of these low energy constants can be determ1ined by theorizing a molecular description of the $X(3872)$ and $Z_b(10610)$ states. Thus, we can predict new hadronic molecules, in particular the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. We also discuss hadron molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the heavy meson-a…

QuarkNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeHadronNuclear TheoryFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryCharm (quantum number)Physical and Theoretical Chemistry010306 general physicsWave functionNuclear ExperimentPhysicsIsovector010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaCondensed Matter PhysicsAtomic and Molecular Physics and OpticsBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment
researchProduct