0000000000043278

AUTHOR

Sarah Weckhuysen

0000-0003-2878-1147

IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.

research product

Correction: The landscape of epilepsy-related GATOR1 variants

International audience; The original version of this article contained an error in the spelling of the author Erik H. Niks, which was incorrectly given as Erik Niks. This has now been corrected in both the PDF and HTML versions of the article.

research product

The landscape of epilepsy-related GATOR1 variants

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

research product

Correction: IQSEC2-related encephalopathy in males and females:a comparative study including 37 novel patients

This Article was originally published under Nature Research’s License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.

research product

Biallelic gephyrin variants lead to impaired GABAergic inhibition in a patient with developmental and epileptic encephalopathy

Abstract Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors. Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient wi…

research product

Cardiac phenotype in ATP1A3-related syndromes: A multicentre cohort study

ObjectiveTo define the risks and consequences of cardiac abnormalities in ATP1A3-related syndromes.MethodsPatients meeting clinical diagnostic criteria for rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) with ATP1A3 genetic analysis and at least 1 cardiac assessment were included. We evaluated the cardiac phenotype in an Atp1a3 knock-in mouse (Mashl+/−) to determine the sequence of events in seizure-related cardiac death.ResultsNinety-eight patients with AHC, 9 with RDP, and 3 with CAPOS (63 female, mean age 17 years) were included. Resting ECG abnormalities…

research product

NBEA : developmental disease gene with early generalized epilepsy phenotypes

Abstract: NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803

research product