0000000000043337

AUTHOR

Peter M. Van Hasselt

showing 4 related works from this author

IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

2019

Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.

0301 basic medicineMaleGénétique clinique[SDV]Life Sciences [q-bio]MedizinPhysiology030105 genetics & hereditySeizures/epidemiologyEpilepsyBrain Diseases/epidemiologyX-linked inheritanceIntellectual disabilityGuanine Nucleotide Exchange FactorsProtein IsoformsMissense mutationGenetics(clinical)10. No inequalityNon-U.S. Gov'tGenetics (clinical)X-linked recessive inheritanceComputingMilieux_MISCELLANEOUSBrain DiseasesSex CharacteristicsResearch Support Non-U.S. Gov'tBrainSciences bio-médicales et agricoles3. Good healthPedigreePhenotypeintellectual disabilityFemaleBrain/growth & developmentSex characteristicsGénétique moléculaireGuanine Nucleotide Exchange Factors/geneticsEncephalopathyResearch SupportX-inactivationArticle03 medical and health sciencesSeizuresProtein Isoforms/geneticsmedicineJournal ArticleIQSEC2HumansIntellectual Disability/epidemiology[SDV.GEN]Life Sciences [q-bio]/Geneticsbusiness.industryInfant NewbornisoformsCorrectionInfantmedicine.diseaseNewbornHuman genetics030104 developmental biologyMutationepilepsyHuman medicinebusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Correction: IQSEC2-related encephalopathy in males and females:a comparative study including 37 novel patients

2019

This Article was originally published under Nature Research’s License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.

Pediatricsmedicine.medical_specialtyText miningbusiness.industryPublished ErratumEncephalopathyMedizinMEDLINEMedicinebusinessmedicine.diseaseGenetics (clinical)
researchProduct

Biallelic variants in LARS2 and KARS cause deafness and (ovario)leukodystrophy

2019

Supplemental Digital Content is available in the text.

0301 basic medicineLysine-tRNA LigaseMalePathologyMagnetic Resonance SpectroscopyMedizinmembrane proteins030204 cardiovascular system & hematologyMitochondrionDeafnessmedicine.disease_causeCompound heterozygosityCorrectionsLeukoencephalopathyMyelin0302 clinical medicineCytosolLeukoencephalopathies030212 general & internal medicineOvarian DiseasesTransfer RNA AminoacylationChildZebrafishMUTATIONExome sequencing10012MutationBrainMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]General MedicineMiddle AgedDisorders of movement Donders Center for Medical Neuroscience [Radboudumc 3]Magnetic Resonance ImagingMitochondriaProtein Transportendoplasmic reticulummedicine.anatomical_structureChild PreschoolTransfer RNAComputingMethodologies_DOCUMENTANDTEXTPROCESSING/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Biological AssayFemaleWRBRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Adultcardiomyopathiesmedicine.medical_specialtyMitochondrial diseaseAminoacylationMuscle disorderBiologyArticleMEDIATES INSERTIONAmino Acyl-tRNA Synthetases03 medical and health sciencesSDG 3 - Good Health and Well-beingmedicineAnimalsPoint MutationHumansAmino Acid SequenceAlleleAllelesCOMPLEXGenetic heterogeneitybusiness.industryArsenite Transporting ATPasesLeukodystrophyGenetic Variation10090Original ArticlesZebrafish Proteinsbiology.organism_classificationDILATED CARDIOMYOPATHYmedicine.diseasezebrafishGENEMolecular biologyDisease Models Animal030104 developmental biologyMembrane protein[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics10084Neurology (clinical)Transfer RNA AminoacylationMEMBRANEbusinessSequence Alignment030217 neurology & neurosurgeryexomeNeurology
researchProduct

Key features and clinical variability of COG6-CDG

2015

The conserved oligomeric Golgi (COG) complex consists of eight subunits and plays a crucial role in Golgi trafficking and positioning of glycosylation enzymes. Mutations in all COG subunits, except subunit 3, have been detected in patients with congenital disorders of glycosylation (CDG) of variable severity. So far, 3 families with a total of 10 individuals with biallelic COG6 mutations have been described, showing a broad clinical spectrum. Here we present 7 additional patients with 4 novel COG6 mutations. In spite of clinical variability, we delineate the core features of COG6-CDG i.e. liver involvement (9/10), microcephaly (8/10), developmental disability (8/10), recurrent infections (7…

MaleMicrocephalyGlycosylationAdolescentEndocrinology Diabetes and MetabolismProtein subunitHyperkeratosisMolecular Sequence DataGolgi ApparatusCase ReportsResearch SupportBiochemistryConserved oligomeric Golgi complexYoung AdultEndocrinologyCogCongenital Disorders of GlycosylationGeneticsJournal ArticleMedicineHumansNon-U.S. Gov'tChildMolecular BiologyExome sequencingGenetic Association StudiesGeneticsbusiness.industryConserved oligomeric Golgi complexResearch Support Non-U.S. Gov'tHigh-Throughput Nucleotide SequencingInfantCongenital disorder of glycosylationmedicine.diseasePhenotypeAdaptor Proteins Vesicular TransportPhenotypeCOG6MutationMicrocephalyFemaleCDGbusinessCongenital disorder of glycosylation
researchProduct