0000000000044343

AUTHOR

Ghersi G.

Polylactide biodegradable scaffolds for tissue engineering applications phase separation-based techniques

One of the most reliable techniques for the preparation of biodegradable scaffoldssuitable for tissue engineering applications (e.g. regeneration of wounded/damagedtissues) is based on liquid/liquid phase separation of ternary solvent/antisolvent/polymersolutions. In particular, two phase separation protocols are examined here: ThermallyInduced Phase Separation (TIPS) and Diffusion Induces Phase Separation (DIPS). According to the former protocol, a thermodynamically stable polymeric ternarysolution is brought below its metastability/instability point (spinodal/binodal curve) byquench in a cooling medium: under opportune conditions, a foam-like structure is formedby nucleation and 3-D growt…

research product

Physical and biological properties of electrospun poly(d,l‐lactide)/nanoclay and poly(d,l‐lactide)/nanosilica nanofibrous scaffold for bone tissue engineering

Abstract Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrat…

research product

Toxic effects induced by recombinant Ab 42 Peptide

research product

Co-deposition and characterization of hydroxyapatite-chitosan and hydroxyapatite-polyvinylacetate coatings on 304 SS for biomedical devices

During the last decades, biomaterials have been deeply studied to fabricate and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common materials used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility features, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapati…

research product

Galvanic deposition of Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel

The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and…

research product

Comparative analyses of endothelial and tumoral cells cultured in 2D and 3D type-I collagen fibril gels.

research product