0000000000047040

AUTHOR

Monika Pochwała

Synthesis and catalytic properties for olefin polymerization of new vanadium complexes containing silsesquioxane ligands with different denticity

research product

Synthesis and catalytic performance in ethylene and 1-octene polymerization of chlorotitanium(IV) silsesquioxane complexes. Effect of increasing ligand denticity and type of nonreactive organic substituents

Abstract The series of titanasilsesquioxanes that differ in a way of binding to the transition metal ( via one, two or three oxygen atoms) and type of nonreactive substituents bonded to inorganic oxygen-silicon cage ( i -Bu, Ph, c -C 6 H 11 ) were prepared by reacting of TiCl 4 with 1 eqv. of the silsesquioxane ligand. Upon treatment with an appropriate cocatalyst, all titanium precatalysts are active in ethylene and 1-octene polymerization and produce from low to high molecular weight polyethylenes and moderately ([ mmmm ] = 44–74%) isotactic poly(1-octene)s. The influence of polymerization parameters, type of cocatalyst and the silsesquioxane structure on the catalytic behavior of the tit…

research product

Olefin polymerization and copolymerization by complexes bearing [ONNO]-Type salan ligands: Effect of ligand structure and metal type (titanium, zirconium, and vanadium)

A series of novel titanium(IV) complexes bearing tetradentate [ONNO] salan type ligands: [Ti{2,2′-(OC6H3-5-t-Bu)2-NHRNH}Cl2] (Lig1TiCl2: R = C2H4; Lig2TiCl2: R = C4H8; Lig3TiCl2: R = C6H12) and [Ti{2,2′-(OC6H2-3,5-di-t-Bu)2-NHC6H12NH}Cl2] (Lig4TiCl2) were synthesized and used in the (co)polymerization of olefins. Vanadium and zirconium complexes: [M{2,2′-(OC6H3-3,5-di-t-Bu)2-NHC6H12NH}Cl2] (Lig4VCl2: M = V; Lig4ZrCl2: M = Zr) were also synthesized for comparative investigations. All the complexes turned out active in 1-octene polymerization after activation by MAO and/or Al(i-Bu)3/[Ph3C][B(C6F5)4]. The catalytic performance of titanium complexes was strictly dependent on their structures an…

research product