0000000000048811
AUTHOR
V. A. Kudryavtsev
Evidence for the decay X(3872)→ψ(2S)γ
Evidence for the decay mode X(3872) -> psi(2S)gamma in B+ -> X(3872)K+ decays is found with a significance of 4.4 standard deviations. The analysis is based on a data sample of proton proton collisions, corresponding to an integrated luminosity of 3 fb(-1), collected with the LHCb detector, at centre-of-mass energies of 7 and 8 TeV. The ratio of the branching fraction of the X(3872) -> psi(2S)gamma decay to that of the X(3872) -> J/psi gamma decay is measured to be B(X(3872) -> psi(2S)gamma)/B(X(3872) -> J/psi gamma) = 2.46 +/- 0.64 +/- 0.29, where the first uncertainty is statistical and the second is systematic. The measured value does not support a pure D (D) over bar* molecular interpre…
Volume IV The DUNE far detector single-phase technology
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. T…
Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.
The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.
The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…
Measurement of the lifetime of theBc+meson using theBc+→J/ψπ+decay mode
The difference in total widths between the B+c and B+ mesons is measured using 3.0fb−1 of data collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy proton-proton collisions at the LHC. Through the study of the time evolution of B+c→J/ψπ+ and B+→J/ψK+ decays, the width difference is measured to beΔΓ≡ΓB+c−ΓB+=4.46±0.14±0.07mm−1c,where the first uncertainty is statistical and the second systematic. The known lifetime of the B+ meson is used to convert this to a precise measurement of the B+c lifetime,τB+c=513.4±11.0±5.7fs,where the first uncertainty is statistical and the second systematic.
Search for CP violation inD0→π−π+π0decays with the energy test
A search for time-integrated CP violation in the Cabibbo-suppressed decay D-0 -> pi(-)pi(+)pi(0) ir is performed using for the first time an unbinned model-independent technique known as the energy test. Using proton-proton collision data, corresponding to an integrated luminosity of 2.0 fb(-1) collected by the LHCb detector at a centre-of-mass energy of root s = 8 TeV, the world's best sensitivity to CP violation in this decay is obtained. The data are found to be consistent with the hypothesis of CP symmetry with a p-value of (2.6 +/- 0.5)%. (C) 2014 The Authors. Published by Elsevier B.V.
Effective lifetime measurements in theBs0→K+K−,B0→K+π−andBs0→π+K−decays
Measurements of the effective lifetimes in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays are presented using 1.0 fb(-1)of pp collision data collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The analysis uses a data-driven approach to correct for the decay time acceptance. The measured effective lifetimes are tau(Bs0 -> K+K-) = 1.407 +/- 0.016 (stat) +/- 0.007 (syst) ps, tau(Bs0 -> K+pi-) = 1.524 +/- 0.011 (stat) +/- 0.004 (syst) ps, tau(Bs0 ->pi+K-) = 1.60 +/- 0.06 (stat) +/- 0.01 (syst) ps. This is the most precise determination to date of the effective lifetime in the B-s(0) -> K+K- decay and provides constraints on contributions from physics beyond…
Precision Measurement ofCPViolation inBS0→J/ΨK+K−Decays
The time-dependent CP asymmetry in B-S(0) -> J/Psi K+K- decays is measured using pp collision data, corresponding to an integrated luminosity of 3.0 fb(-1), collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. In a sample of 96 000 B-S(0) -> J/Psi K+K- decays, the CP-violating phase phi(s) is measured, as well as the decay widths GL and GH of the light and heavy mass eigenstates of the B-s(0)-(B) over bar (0)(s) system. The values obtained are phi(s) = -0.058 +/- 0.049 +/- 0.006 rad, Gamma(s) equivalent to (Gamma(L) + Gamma(H))/2 = 0.6603 +/- 0.0027 +/- 0.0015 ps(-1), and Delta Gamma(s) equivalent to Gamma(L)-Gamma(H) = 0.0805 +/- 0.0091 +/- 0.0032 ps(-1), where the f…
Volume I. Introduction to DUNE
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
Determination of γ and−2βsfrom charmless two-body decays of beauty mesons
Using the latest LHCb measurements of time-dependent CP violation in the B-s(0) -> K+K- decay, a U-spin relation between the decay amplitudes of B-s(0) -> K+K- and B-0 -> p(+)p(-) decay processes allows constraints to be placed on the angle gamma of the unitarity triangle and on the B-s(0) mixing phase -2 beta(s). Results from an extended approach, which uses additional inputs on B-0 -> pi(0)pi(0) and B+ -> pi(+)pi(0) decays from other experiments and exploits isospin symmetry, are also presented. The dependence of the results on the maximum allowed amount of U-spin breaking is studied. At 68% probability, the value gamma =( 63.5(-6.7)(+7.2))degrees modulo 180 degrees is determined. In an a…
Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects
This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to…
New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source
Abstract The violation of baryon number, B , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation ( n → n ̄ ) via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state ( n → [ n ′ , n ̄ ′ ] → n ̄ ), and neutron disappearan…
Volume III. DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…