0000000000049902
AUTHOR
Julie A. Phillippi
Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta
Objectives: The acute dissection of an ascending thoracic aortic aneurysm (ATAA) represents a devastating separation of elastic layers occurring when the hemodynamic loads on the diseased wall exceed the adhesive strength between layers. At present, the mechanics underlying aortic dissection are largely unclear, and the biomechanical delamination properties of the aneurysmal aorta are not defined. Individuals with bicuspid aortic valve (BAV) are particularly predisposed to ascending aortic aneurysm formation, with a marked risk of aortic dissection. The purpose of this study was to evaluate and compare the dissection properties of nonaneurysmal and aneurysmal human ascending thoracic aorta …
Fiber Micro-Architecture in the Longitudinal-Radial and Circumferential-Radial Planes of Ascending Thoracic Aortic Aneurysm Media.
It was recently demonstrated by our group that the delamination strength of ascending thoracic aortic aneurysms (ATAA) was lower than that of control (CTRL, non-aneurysmal) ascending thoracic aorta (ATA), and the reduced strength was more pronounced among bicuspid (BAV) vs. tricuspid aortic valve (TAV) patients, suggesting a different risk of aortic dissection for BAV patients. We hypothesized that aortic valve morphologic phenotype predicts fiber micro-architectural anomalies in ATA. To test the hypothesis, we characterized the micro-architecture in the longitudinal-radial (Z-RAD) and circumferential-radial (Θ-RAD) planes of human ATA tissue that was artificially dissected medially. The ou…
Extracellular matrix fiber microarchitecture is region-specific in bicuspid aortic valve-associated ascending aortopathy
Abstract Objective Ascending thoracic aortic aneurysm (ATAA) in patients with bicuspid aortic valve (BAV) commonly dilate asymmetrically compared with patients with tricuspid aortic valve (TAV). This discrepancy in aneurysm geometry led us to hypothesize that microarchitectural differences underlie the observed asymmetric dilatation pattern. The purpose of this study was to characterize the microarchitectural distinctions of the extracellular matrix of the 2 phenotypes with a focus on the proportion of radially oriented elastin and collagen fibers in different circumferential aortic regions. Methods Aortic tissue rings were obtained just distal to the sinotubular junction from patients with…
Association of Fiber Orientation and Dissection Properties of Ascending Thoracic Aortic Aneurysms With Aortic Valve Morphology
Type A aortic dissection (AoD) of an ascending thoracic aortic aneurysm (ATAA) is a life-threatening cardiovascular emergency with a high potential for death. Despite improved surgical techniques, the morbidity risk for emergent surgery remains 24% worldwide according to data from the International Registry of Acute Aortic Dissection [1].Copyright © 2011 by ASME
FIBER DISTRIBUTION OF ASCENDING THORACIC AORTIC ANEURYSMS ASSOCIATED WITH VALVE MORPHOLOGY
Biomechanics and Pathobiology of Aortic Aneurysms
Biomechanical weakening of the aorta leads to aneurysm formation and/or dissection and total biomechanical failure results in rupture, which is often fatal. The most common aneurysm is the abdominal aortic aneurysm (AAA) whereas thoracic aortic aneurysms (TAA) involve the ascending or descending segments of the aorta. Biomechanical strength of the aorta is maintained in part via balance between the integrity of the aortic medial and adventitial extracellular matrix and the health of the mural cells. From a biomechanical perspective, aneurysms rupture or dissect when wall stresses locally exceed the wall strength. Pathobiologic mechanisms, pre-disposing disorders and variability of patient d…
Constitutive modeling of ascending thoracic aortic aneurysms using microstructural parameters.
Ascending thoracic aortic aneurysm (ATAA) has been associated with diminished biomechanical strength and disruption in the collagen fiber microarchitecture. Additionally, the congenital bicuspid aortic valve (BAV) leads to a distinct extracellular matrix structure that may be related to ATAA development at an earlier age than degenerative aneurysms arising in patients with the morphological normal tricuspid aortic valve (TAV). The purpose of this study was to model the fiber-reinforced mechanical response of ATAA specimens from patients with either BAV or TAV. This was achieved by combining image-analysis derived parameters of collagen fiber dispersion and alignment with tensile testing dat…