0000000000050039

AUTHOR

Jordi J. Bou

0000-0001-7948-8720

showing 3 related works from this author

Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications

2019

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 &deg

BiopolimersMaterials scienceBiopolymerGeneral Chemical EngineeringPolyestersPHBPolyestermacromolecular substancesMembranes (Biology)engineering.materialArticlelcsh:ChemistryPolyhydroxybutyratePolydioxanonechemistry.chemical_compoundCrystallinity:Enginyeria química [Àrees temàtiques de la UPC]BiopolymersMembranes (Biologia)biopolymerPolièstersPDOGeneral Materials SciencepolyesterTissue engineeringScaffoldsMolar massNanotecnologiaTermoplàsticstechnology industry and agriculturePLGAPolyesterPLGAIn vitro hydrolytic degradationlcsh:QD1-999chemistryChemical engineeringEnginyeria de teixitsPCLscaffoldstissue engineeringPolycaprolactoneengineeringin vitro hydrolytic degradationBiopolymer
researchProduct

In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case

2018

[EN] Monitoring and understanding the in vitro behaviour of polyester based scaffolds both comprising the study of the hydrolytic degradation and the cell seeding viability is essential to ensure the desired functionality, according to a given biomedical purpose. As a model case to compare the performance of techniques to monitor the in vitro behaviour, poly(lactide-co-glycolide) (PLGA) scaffolds were chosen. The in vitro hydrolytic degradation of PLGA scaffolds was carried out in water and phosphate buffered saline (PBS). The evolution of the mass loss, the molar mass, the thermal properties and the surface morphology were monitored. The hydrolytic degradation media was correspondingly eva…

ScaffoldSolucions polimèriquesMaterials sciencePolymers and PlasticsBiocompatibilitypoly(lactide-co-glycolide) (PLGA)Polyester02 engineering and technology010402 general chemistry01 natural sciencesScaffoldchemistry.chemical_compoundCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAPoly(lactide-co-glycolide) (PLGA)Cell adhesionMaterialsMolar massOrganic ChemistryPolymer testing021001 nanoscience & nanotechnologyIn vitro0104 chemical sciencesPolyesterPLGAchemistryIn vitro validationMAQUINAS Y MOTORES TERMICOSDegradation (geology)BiocompatibilityMATEMATICA APLICADA0210 nano-technologyBiomedical engineeringPolymer Testing
researchProduct

Mark-Houwink Parameters of Biosynthetic Poly(γ-glutamic acid) in Aqueous Solution

2001

A combined viscosity–light scattering–gel permeation chromatography (GPC) study was carried out on bacterially produced poly(γ-glutamic acid) (PGGA). PGGA samples with weight-average molecular weights ranging from 8×104 up to 8×105 g·mol–1 dissolved in phosphate buffer at 0.13 M ionic strength were used. It was found that the Mark–Houwink relation is acceptably obeyed, giving K and a values of 1.84×10–6 dL·g–1 and 1.16, respectively. As expected, GPC analysis showed that PGGA does not follow the universal calibration plot and that deviations can not be avoided by modifying the ionic strength.

Aqueous solutionChromatographyPolymers and PlasticsMolecular massChemistryCalibration curveOrganic ChemistryMark–Houwink equationGlutamic acidPermeationCondensed Matter PhysicsIonic strengthMaterials ChemistryA valuePhysical and Theoretical ChemistryMacromolecular Chemistry and Physics
researchProduct