0000000000050042

AUTHOR

Amparo Ribes-greus

0000-0003-2460-8291

Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 &deg

research product

Thermal kinetics for the energy valorisation of polylactide/sisal biocomposites

[EN] The thermal stability and decomposition kinetics of PLA/sisal biocomposites was discussed to evaluate the suitability of their use in energy recovery processes such as pyrolysis and combustion. The influence of the addition of sisal up to 30%wt, the presence of coupling agent, and the atmosphere of operation, i.e. inert or oxidative was discussed by means of multi-rate linear non-isothermal thermogravimetric experiments. All biocomposites showed a mean high heating value of 15 MJ/kg indicating their suitability for energy recovery processes. The thermal requirements of PLA/sisal decomposition were assessed in terms of onset decomposition temperature and apparent activation energy. A mi…

research product

Dielectric Spectroscopy of Recycled Polylactide

The effects of multiple mechanical recycling on amorphous polylactide (PLA) were simulated by means of five successive injection-grinding cycles. The influence of the induced thermo-mechanical degradation on the dielectric properties of PLA was analysed. The relaxation spectra were studied in terms of the complex dielectric permittivity (ε0 and ε00) and the dielectric loss tangent, tg(d) in the frequency range from 102 to 107 Hz over the temperature interval from 0 C to 140 C. It was possible to distinguish two relaxations zones, one at low temperatures and high frequencies (b relaxation) and another at higher temperatures and lower frequencies (a relaxation). The individual relaxations wer…

research product

Molecular Mobility in Oriented and Unoriented Membranes Based on Poly[2-(Aziridin-1-yl)ethanol]

Unoriented and oriented membranes based on dendronized polymers and copolymers obtained by chemical modification of poly[2-(aziridin-1-yl) ethanol] (PAZE) with the dendron 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy]benzoate were considered. DSC, XRD, CP-MAS NMR and DETA, contribute to characterize the tendency to crystallize, the molecular mobility of the benzyloxy substituent, the dendritic liquid crystalline group and the clearing transition. The orientation of the mesogenic chain somewhat hindered this molecular motion, especially in the full substituted PAZE. The fragility, free volume and thermal expansion coefficients of these membranes near the glass transition are related to the orie…

research product

A statistical design of experiments for optimizing the MALDI-TOF-MS sample preparation of polymers. An application in the assessment of the thermo-mechanical degradation mechanisms of poly (ethylene terephthalate).

[EN] The sample preparation procedure for MALDI-TOF MS of polymers is addressed in this study by the application of a statistical Design of Experiments (DoE). Industrial poly (ethylene terephthalate) (PET) was chosen as model polymer. Different experimental settings (levels) for matrixes, analyte/matrix proportions and concentrations of cationization agent were considered. The quality parameters used for the analysis were signal-to-noise ratio and resolution. A closer inspection of the statistical results provided the study not only with the best combination of factors for the MALDI sample preparation, but also with a better understanding of the influence of the different factors, individua…

research product

Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decompositon kinetics

[EN] The disposal stage of polylactide (PLA) was assessed by burying it in active soil following an international standard. Degradation in soil promotes physical and chemical changes in the polylactide properties. The characterization of the extent of degradation underwent by PLA was carried out by using Thermal Analysis techniques. In this paper, studies on the thermal stability and the thermal decomposition kinetics were performed in order to assess the degradation process of a commercial PLA submitted to an accelerated soil burial test by means of multi-linear-non-isothermal thermogravimetric analyses. Results have been correlated to changes in molecular weight, showing the same evolutio…

research product

A kinetic study of the formation of smectic phases in novel liquid crystal ionogens

[EN] A multi-rate non-isothermal kinetic analysis of the isotropic-melt to liquid crystalline phase transition of novel liquid crystalline ionogenic copolymers, LCIs, the 10-(4-methoxyazobenzene-4'-oxy)decyl methacrylate]-co-2-(acrylamido-2-methyl-1-propanesulfonic acid)s, 10-MeOAzB/AMPS, copolymers, has been performed by means of calorimetric experiments. An analytical methodology which includes the study of the phase transition rate parameter, the determination of the activation energies by using Kissinger and Flynn-Wall-Ozawa models, and the study of the phase transition kinetics by the use of the Avrami theory, has been applied. The formation of the mesophases from the isotropic state o…

research product

Water absorption and hydrothermal performance of PHBV/sisal biocomposites

[EN] The performance of biocomposites of poly(hydroxybutyrate-co-valerate) (PHBV) and sisal fibre subjected to hydrothermal tests at different temperatures above the glass transition of PHBV (TH ¿ 26, 36 and 46 C) was evaluated in this study. The influences of both the fibre content and presence of coupling agent were focused. The water absorption capability and water diffusion rate were considered for a statistical factorial analysis. Afterwards, the physico-chemical properties of water-saturated biocomposites were assessed by Fourier-Transform Infrared Analysis, Size Exclusion Chromatography, Differential Scanning Calorimetry and Scanning Electron Microscopy. It was found that the water d…

research product

Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites

[EN] The dielectric properties of virgin polylactide (PLA) and its reinforced composites with different weight amounts of sisal fibres were assessed at broad temperature (from - 130 degrees C to 130 degrees C) and frequency ranges (from 10(-2)-10(7) Hz), before and after being subjected to accelerated hydrothermal ageing. The synergetic effects of both the loading of sisal and hydrothermal ageing were analysed by means of dielectric relaxation spectra. The relaxation time functions were evaluated by the Havriliak-Negami model, substracting the ohmic contribution of conductivity. The intramolecular and intermolecular relaxations were respectively analysed by means of Arrhenius and Vogel-Fulc…

research product

Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation

Abstract Nanofibrous scaffolds composed of polycaprolactone (PCL) and gelatin (Ge) were obtained through a hydrolytic assisted electrospinning process. The PCL-to-Ge proportion (100/0 to 20/80), as well as the dissolution time (24, 48, 72, 96, 120 h) into a 1:1 formic/acetic acid solvent before electrospinning were modified to obtain the different samples. A strong influence of these factors on the physicochemical properties of the scaffolds was observed. Higher Ge percentage reduced crystallinity, allowed a uniform morphology and increased water contact angle. The increase in the dissolution time considerably reduced the molar mass and, subsequently, fibre diameter and crystallinity were a…

research product

New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up possibilities.

Abstract This paper shows a particular example to move to a sustainable circular economical process from valorization of rice straw ashes by developing a green synthesis for obtaining a useful sub-product. This strategy can palliate negative effects of the agriculture waste practices on the environment and also the obtained silica reduced nitrate content in waters. It is demonstrated that the silica synthesis developed at lab was scalable more than a hundred times with good results. Adsorption studies of nitrate in standards and real well waters at lab scale and scaling-up provided similar results. Adsorption values near to 15 mg/g for nitrate standards and 8.5 mg/g for well water were obta…

research product

Hygrothermal ageing of reprocessed polylactide

[EN] The influence of an accelerated hygrothermal ageing simulation test on a commercial PLA and its three subsequent mechanically-reprocessed materials was studied. The analysis was focused on the water diffusion kinetics and the physico-chemical changes induced by the hygrothermal degradation. Water diffusion proceeded faster than chain relaxation processes, as defined by a Case II absorption model. It was proved that the water diffusion rate decreased with subsequent reprocessing cycles and increased with higher hygrothermal ageing temperatures. Hydrolytic chain scission provoked significant molar mass decays and consequent general losses of thermal and mechanical performance. The rearra…

research product

The Role of Eucalyptus Species on the Structural and Thermal Performance of Cellulose Nanocrystals (CNCs) Isolated by Acid Hydrolysis

Cellulose nanocrystals (CNCs) are attractive materials due to their renewable nature, high surface-to-volume ratio, crystallinity, biodegradability, anisotropic performance, or available hydroxyl groups. However, their source and obtaining pathway determine their subsequent performance. This work evaluates cellulose nanocrystals (CNCs) obtained from four different eucalyptus species by acid hydrolysis, i.e., E. benthamii, E. globulus, E. smithii, and the hybrid En × Eg. During preparation, CNCs incorporated sulphate groups to their structures, which highlighted dissimilar reactivities, as given by the calculated sulphate index (0.21, 0.97, 0.73 and 0.85, respectively). Although the impact o…

research product

Effect of graphene nanoplatelets on the dielectric permittivity and segmental motions of electrospun poly(ethylene-co-vinyl alcohol) nanofibers

The influence of the addition of graphene nanoplatelets (GNPs) on the intra/inter – molecular segmental motions of poly(ethylene-co-vinyl alcohol) (EVOH) was assessed by means of dielectric thermal analysis (DETA). The relaxation spectra were studied in terms of the dielectric permittivity (ε′) and the dielectric loss tangent (tan δ) at wide ranges of frequency (from 10−2 to 107 Hz) and temperature (from -150 to 140 °C). Two relaxation zones were disthinguished. Below the glass transition temperature (Tg), two β-relaxations were observed, which are characteristic local modes of mobility of the EVOH side groups, and related to the influence of the different surroundings of ethylene or vinyl …

research product

Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration

Abstract The endorsement of functional features such as biocompatibility, mechanical integrity, or electrical conductivity to tissue engineering (TE) scaffolds is essential to stimulate cell adhesion and proliferation. In this study, electrospun nanofibers based on polycaprolactone (PCL) and gelatin (Ge) (ratios 60/40, 50/50, and 40/60), and polyaniline (PAni) particles (0.25, 0.50, and 1.00%wt) were prepared. The time of dissolution in an acid solvent mixture before electrospinning allowed for obtaining nanofibers with controlled features. Changes in the molar mass (Mn from 90·103 to 15·103 g·mol−1), in the crystalline microstructure (Xc from 60 to 25%) and the surface morphology (diameter…

research product

Thermal and thermo-oxidative stability and kinetics of decomposition of PHBV/sisal composites

The decomposition behaviours of composites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and sisal were assessed in terms of thermal stability and decomposition kinetics, under inert and oxidative conditions, by means of multi-rate linear non-isothermal thermogravimetric experiments. A statistical design of experiments was applied to study the influence of the addition of sisal (0-10-20-30%wt), the presence coupling agent (Yes/No) and the applied conditions of work (inert or oxidative). An improvement of the thermal and thermo-oxidative stability of PHBV with the addition of sisal was observed for all cases. An accurate methodology based on iso-conversional methods was applied…

research product

Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate)

Mechanical recycling of poly(ethylene terephthalate) (PET) was simulated by multiple processing to assess the effects of thermo-mechanical degradation, and characterized using rheological and thermal analysis techniques. Thermo-mechanical degradation under repeated extrusion induces chain scission reactions in PET, which result in a dramatic loss in the deformation capabilities and an increase in the fluidity of the polymer under reprocessing, reducing its recycling possibilities after four extrusion cycles. Multiple reprocessing severely affects the storage modulus and the microstructure of recycled PET, both in the amorphous and crystalline regions. Multimodal melting behavior is observed…

research product

Thermal and thermo-oxidative stability of reprocessed poly(ethylene terephthalate)

An exhaustive assessment of the behaviour of virgin and mechanically reprocessed poly(ethylene terephthalate) (PET) facing thermal and thermo-oxidative decomposition processes is presented in this work, as an approach for the energetic valorisation of post-consumer PET goods. Multi-rate linear-non-isothermal thermogravimetric (TGA) experiments under inert (Ar) and reactive (O2) conditions were performed to virgin PET and its recyclates in order to simulate the thermal behaviour of the materials facing pyrolysis and combustion processes. The release of gases was monitored by evolved gas analysis of the fumes of the TGA experiment, by in-line Fourier-transform infrared (IR) analysis, with the…

research product

Spray-Drying Performance and Thermal Stability of L-Ascorbic Acid Microencapsulated with Sodium Alginate and Gum Arabic

[EN] The potential of sodium alginate (ALG) and gum arabic (GA) as wall polymers for Lascorbic acid (AA) encapsulation as a tool for their preservation against the thermo-oxidative degradation was investigated. The influence of such polymers used as wall material on the AAcontent, size, encapsulation efficiency, encapsulation yield and thermo-oxidative stability were evaluated. The AA-microparticles were obtained using the spray-drying technique. An experimental Taguchi design was employed to assess the influence of the variables in the encapsulation process. The microparticles morphology and size distribution were characterized by scanning electron microscopy and laser diffraction. The the…

research product

Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques

[EN] The upcoming introduction of polylactides in the fractions of polymer waste encourages technologists to ascertain its valorization at the best quality conditions. Mechanical recycling of PLA represents one of the most cost-effective methodologies, but the recycled materials are usually directed to downgraded applications, due to the inherent thermomechanical degradation affecting its mechanical, thermal and rheological performance. In this review, the current state of mechanical recycling of PLA is reported, with special emphasis on a multi-scale comparison among different studies. Additionally, the applications of physical and chemical upgrading strategies, as well as the chances to b…

research product

Crosslinked chitosan/poly(vinyl alcohol)-based polyelectrolytes for proton exchange membranes

[EN] The preparation polyelectrolytes based on crosslinked poly(vinyl alcohol) (PVA) and chitosan (CS) was considered as a feasible alternative to develop highly functionalised, cost-effective and eco-friendly membranes for proton exchange fuel cell technologies. CS/PVA-based membranes were combined with sulfosuccinic acid (SSA) as crosslinking and sulfonating agent, and glycerol (GL) to promote flexibility and favour their manageability. The chemical structure, the thermo-oxidative behaviour, the ethanol uptake, the electric, the proton conductivity, and the performance in direct ethanol fuel cell (DEFC) were assessed. In general, all the CS/PVA-based polyelectrolytes showed a synergetic i…

research product

Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system

[EN] Blended nanofibrous scaffolds based on polycaprolactone (PCL) and gelatin (Ge) were successfully prepared. A formic/acetic acid (1:1) mixture was used to dissolve PCL/Ge blends from 100/0 to 20/80 %wt in steps of 10 %wt. The hydrolysis of the PCL diluted in the formic/acetic acid mixture was considered as a method for tailoring the surface morphology and physicochemical features of the nanofibrous PCL/Ge scaffolds as a function of the dissolution time. The fibre diameter remained in the nanoscale range for all the studied scaffolds, which is crucial to mimic the extra-cellular matrix size. The reduction of the intrinsic viscosity, molar mass and hydrodynamic radius found for the PCL mo…

research product

Suitability of blends from virgin and reprocessed polylactide: performance and energy valorization kinetics

[EN] A blending strategy of virgin and reprocessed polylactide may be postulated as an alternative to reduce the material cost at industrial level, and as a valorisation route to plastic waste management of production scraps. The performance of blends prepared from virgin polylactide and polylactide mechanically reprocessed up to two cycles (PLA-V/R) was assessed in terms of thermo-oxidative stability, morphology, viscoelasticity and thermal kinetics for energetic valorisation. PLA-V/R blends showed appropriate thermo-oxidative stability. The amorphous nature of polylactide was preserved after blending. The viscoelastic properties showed an increment of the mechanical blend effectiveness, w…

research product

Analysis of plasticization and reprocessing effects on the segmental cooperativity of polylactide by dielectric thermal spectroscopy

Abstract In the present study, the dielectric properties of both neat and plasticized polylactide submitted to repeated extrusion and injection processes to simulate recycling were analysed. The dielectric relaxation spectrum, consisting of β and α relaxation, revealed the relevance of both acryl-PEG based plasticization and thermo-mechanical degradation induced by repeated extrusion and grinding-injection reprocessing cycles on polylactide (PLA). The β-relaxation has its origin in the intramolecular local motions of pendant groups of the PLA backbone, while the α-relaxation is representative of the intermolecular large-scale segmental motions of the PLA backbone. The addition of acryl-PEG …

research product

Influence of substrate and temperature on the biodegradation of polyester-based materials: Polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases

[EN] The extended use of polymers from renewable resources such as aliphatic polyesters or polyhydroxyalkanoates boosted the necessity to understand their behaviour in an end-of-life scenario. Although they can be degraded in reasonable shorter times than traditional polymers, understanding the degradation mechanisms under dissimilar conditions will contribute to further developments in this field. This work aimed to study the effect of temperature and substrate in the degradation of polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) in a simulated laboratory scale to ascertain their contribution, separately or in combination. For this purpose, nine parallel degradat…

research product

Triblock SEBS/DVB crosslinked and sulfonated membranes: Fuel cell performance and conductivity

[EN] A set of styrene-ethylene-butylene-styrene triblock copolymer (SEBS) membranes with 10 or 25 wt.% divinyl-benzene (DVB) as a crosslinking agent were prepared and validated. Physicochemical characterization revealed suitable hydrolytic and thermal stability of photo-crosslinked membranes containing 25%wt. DVB and post-sulfonated. These compositions were evaluated in H2/O2 single cells, and electrical and proton conductivities were furtherly assessed. The membranes with the milder post-sulfonation showed greater proton conductivity than those with excessive sulfonation. In terms of electrical conductivity, a universal power law was applied, and the values obtained were low enough for bei…

research product

Long-term properties and end-of-life of polymers from renewable resources

[EN] The long-term properties and end-of-life of polymers are not antagonist issues. They actually are inherently linked by the duality between durability and degradation. The control of the service-todisposal pathway at useful performance, along with low-impact disposal represents an added-value. Therefore, the routes of design, production, and discarding of bio-based polymers must be carefully strategized. In this sense, the combination of proper valorisation techniques, i.e. material, energetic and/ or biological at the most appropriate stage should be targeted. Thus, the consideration of the end-of-life of a material for a specific application, instead of the end-of-life of a material s…

research product

Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost

[EN] Self-reinforced polymer composites (SRCs) are proposed as a suitable alternative for composite development, based in the combination of a polymeric matrix and a polymeric fibre made of the same polymer. SRCs based in polylactide (PLA) could be fully biodegradable and their valorisation routes could presumably be assimilated to those for neat PEA. In this sense, the aim of this study was to develop new self-reinforced PLA-based composites and ascertain their biodegradability. For this purpose, PLA-based SRCs were obtained through a thermo-compression procedure and their biodegradability corroborated under standard conditions (ISO 20200). Moreover, a deep study of the effect of the diffe…

research product

In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case

[EN] Monitoring and understanding the in vitro behaviour of polyester based scaffolds both comprising the study of the hydrolytic degradation and the cell seeding viability is essential to ensure the desired functionality, according to a given biomedical purpose. As a model case to compare the performance of techniques to monitor the in vitro behaviour, poly(lactide-co-glycolide) (PLGA) scaffolds were chosen. The in vitro hydrolytic degradation of PLGA scaffolds was carried out in water and phosphate buffered saline (PBS). The evolution of the mass loss, the molar mass, the thermal properties and the surface morphology were monitored. The hydrolytic degradation media was correspondingly eva…

research product

Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide)

[EN] Multiple processing by means of successive injection cycles was used to simulate the thermo-mechanical degradation effects on the oligomeric distribution of PLA under mechanical recycling. Likewise, an accelerated thermal ageing over PLA glass transition was performed in order to simulate its service life. MALDI-TOF MS was used for the analysis and the sample preparation procedure was assessed by means of a statistical Design of Experiments (DoE). The quality effects in use for the analysis were signal-to-noise ratio and Resolution. Different matrixes, analyte/matrix proportions and the use of NaTFA as cationization agent were considered. A deep inspection of the statistical results pr…

research product

Dielectric spectroscopy of novel thiol-ene/epoxy thermosets obtained from allyl-modified hyperbranched poly (ethyleneimine) and diglycidylether of bisphenol A

[EN] Dielectric Thermal Analysis (DETA) of a series of new thermoset obtained by click chemistry was performed. The new thermosets were obtained by a dual-curing process consisting in a first photochemical thiol-ene, followed by a thermal thiol-epoxy starting from an allyl-terminated hyperbranched poly(ethyleneimine) (HBPEI) and different proportions of diglycidylether of bisphenol A (DGEBA) and the corresponding stoichiometric proportions of pentaerythritol tetrakis (3-mercaptopropionate, PETMP). The dielectric behaviour was obtained experimentally supressing the conductive effects. Two sub-Tg intramolecular non-cooperative gamma and beta relaxations and an intermolecular cooperative alpha…

research product

Performance of Sulfonated Poly(Vinyl Alcohol)/Graphene Oxide Polyelectrolytes for Direct Methanol Fuel Cells

The use of nanotechnology along with the consideration of a functionalization and stabilization approach to poly(vinyl alcohol) (PVA) is considered useful for the preparation of cost-effective polyelectrolyte membranes. A set of nanocomposite and crosslinked membranes based on PVA/sulfosuccinic acid (SSA)/graphene oxide (GO) are prepared and analyzed as polyelectrolytes in direct methanol fuel cells (DMFCs). The crosslinking and sulfonation by the use of SSA enhances the stability and increase the proton-conducting sites in the PVA structure. The presence of GO augments the stability, remarkably decreases the methanol crossover, and enhances power density curves. An optimum value for proton…

research product

The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET)

[EN] The action of thermo-mechanical degradation induced by mechanical recycling of poly(ethylene terephthalate) was simulated by successive injection moulding cycles. Degradation reactions provoked chain scissions and a reduction in molar mass mainly driven by the reduction of diethyleneglycol to ethylene glycol units in the flexible domain of the PET backbone, and the formation of -OH terminated species with shorter chain length. The consequent microstructural changes were quantified taking into account a three-fraction model involving crystalline, mobile amorphous (MAF) and rigid amorphous fractions (RAF). A remarkable increase of RAF, to a detriment of MAF was observed, while the percen…

research product

Poly (lactic acid)/D-limonene/ZnO bio-nanocomposites with antimicrobial properties

[EN] Antimicrobial films of poly (lactic acid) (PLA)/D-limonene/zinc oxide (ZnO)-based bio-nanocomposites were prepared via melt compounding and subsequent thermocompression. D-limonene was incorporated at concentrations of 10 or 20 wt%, and ZnO pure nanoparticles and those organically modified with oleic acid (O-ZnO), with an average diameter of 13.5 nm, were included at concentrations of 3, 5, and 8 wt%. The plasticizing effect of D-Limonene was corroborated by a decrease in the glass transition temperature compared to pure PLA. The presence of ZnO and O-ZnO in the PLA matrix promoted a slight increase in the degree of crystallinity due to its nucleant performance. Although ZnO and O-ZnO …

research product

Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications

Graphene nanoplatelets (GNPs) were synthetized from graphite powder and, thereafter, embedded in poly(ethylene-co-vinyl alcohol) (EVOH) fibers by electrospinning in the 0.1&ndash

research product

Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario

[EN] The eco-design considers the factors to prepare biocomposites under an end-of-life scenario. PLA/sisal biocomposites were obtained from amorphous polylactide and sisal loadings of 10, 20 and 30 wt% with and without coupling agent, and subjected to biodegradation in soil according to standard IS0846. Mass loss, differential scanning calorimetry and size-exclusion chromatography were used for monitoring biodegradation. A statistical factorial analysis based on the molar mass M-n, and crystallinity degree X-c pointed out the relevance and interaction of amount of fibre and use of coupling agent with the time of burial in soil., During the preparation of biocomposites, chain scission provo…

research product

Crosslinked Sulfonated Poly(vinyl alcohol)/Graphene Oxide Electrospun Nanofibers as Polyelectrolytes

[EN] Taking advantage of the high functionalization capacity of poly(vinyl alcohol) (PVA), bead-free homogeneous nanofibrous mats were produced. The addition of functional groups by means of grafting strategies such as the sulfonation and the addition of nanoparticles such as graphene oxide (GO) were considered to bring new features to PVA. Two series of sulfonated and nonsulfonated composite nanofibers, with different compositions of GO, were prepared by electrospinning. The use of sulfosuccinic acid (SSA) allowed crosslinked and functionalized mats with controlled size and morphology to be obtained. The functionalization of the main chain of the PVA and the determination of the optimum co…

research product

Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites

The influence of the combined exposure to water and temperature on the behaviour of polylactide/sisal biocomposites coupled with maleic acid anhydride was assessed through accelerated hydrothermal ageing. The biocomposites were immersed in water at temperatures from 65 to 85 °C, between the glass transition and cold crystallisation of the PLA matrix. The results showed that the most influent factor for water absorption was the percentage of fibres, followed by the presence of coupling agent, whereas the effect of the temperature was not significant. Deep assessment was devoted to biocomposites subjected to hydrothermal ageing at 85 °C, since it represents the extreme degrading condition. Th…

research product

Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites

[EN] A series of bionanocomposite films based on chitosan, reinforced with chitin nanocrystals, were developed, and assessed in terms of dielectric behaviour and conductivity by using an experimental methodology that allows avoiding the conductivity contribution and the exclusion of contact and interfacial polarization effects. The dielectric relaxations at low and high frequency and temperatures were modeled by Havriliak-Negami functions. Below the glass transition temperature (Tg), the gamma and beta relaxations were observed, which were related to intramolecular and non-cooperative segmental movements. At higher temperatures, an intermolecular and cooperative macromolecular movement, rel…

research product

Synthesis and characterization of bisulfonated poly(vinyl alcohol)/graphene oxide composite membranes with improved proton exchange capabilities

Abstract Composite membranes based on poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by solution-casting method to be used as proton exchange membranes (PEMs) in fuel cell (FC) applications. Bisulfonation was employed as a strategy to enhance the proton conductivity of these membranes. First, a direct sulfonation of the polymer matrix was accomplished by intra-sulfonation of the polymer matrix with propane sultone, followed by the inter-sulfonation of the polymer chains using sulfosuccinic acid (SSA) as a crosslinking agent. Furthermore, the addition of graphene oxide (GO) as inorganic filler was also evaluated to enhance the proton-conducting of the composite membranes. Th…

research product

Influence of the Molecular Weight on PVA/GO Composite Membranes for Fuel Cell Applications

Composite polymer electrolyte membranes were prepared with poly (vinyl alcohol) (PVA). Two different molecular weight (Mw), 67·103 and 130·103 g·mol−1 were selected, cross-linked with sulfosuccinic acid (SSA) and doped graphene oxide (GO). The effects on the membranes obtained from these polymers were characterized in order to evaluate the fuel cell performance. Electron microscopy showed a proper nanoparticle distribution in the polymer matrix. The chemical structure was evaluated by Fourier transform infrared spectroscopy. The absence of a crystalline structure and the enhancement on the thermal stability with the addition of 1% of GO was demonstrated by thermal characterization. Total tr…

research product

Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles

[EN] Effective antimicrobial polymeric nanocomposites were prepared with low density polyethylene (LDPE) and zinc oxide nanoparticles by melt compounding. These nanoparticles (~17 nm) obtained by the sol¿gel method, were used both as-synthesized and modified organically with oleic acid (Mod-ZnO). Young¿s modulus increased ~15 and 18% for LDPE/ZnO and LDPE/Mod-ZnO, respectively, compared to neat LDPE. When these composites were irradiated with white light, they showed an increase with nanoparticle incorporation, and the antimicrobial properties against E. coli were ~96¿99%. The release of the Zn cations was related to the antimicrobial properties. These nanocomposites are attractive for use …

research product

Study of the molecular origin of the mechanical and dielectric β relaxation of methyl methacrylate/isopropenyl methyl ketone copolymers

Resultats de l'etude dielectrique, mecanique et par TSC en faveur d'une combinaison d'une barriere intra- et intermoleculaire dans la relaxation beta

research product

Encapsulation of Vitamins A and E as Spray-Dried Additives for the Feed Industry

Encapsulated fat-soluble powders containing vitamin A (VA) and E (VE) were prepared as a feasible additive for extruded feed products. The effect of the encapsulating agents (Capsul-CAP&reg

research product

A methodology to assess the energetic valorization of bio-based polymers from the packaging industry: pyrolysis of reprocessed polylactide

The energetic valorization process of bio-based polymers is addressed in this study, taking polylactide (PLA) as model. The pyrolysis of virgin and multiple-injected PLA was simulated by means of multi-rate linear-non-isothermal thermogravimetric experiments. A complete methodology, involving control of gases, thermal stability and thermal decomposition kinetics was proposed. The release of gases was monitored by Evolved Gas Analysis of the fumes of pyrolysis, by in-line FT-IR, with the aid of 2D-correlation IR characterization. A novel model to establish the thermal stability of PLAs under any linear heating profile was proposed. A kinetic strategy was methodically applied to assess the th…

research product

Reprocessed polylactide: Studies of thermo-oxidative decomposition

The combustion process of virgin and reprocessed polylactide (PLA) was simulated by multi-rate linear non-isothermal thermogravimetric experiments under O2. A complete methodology that accounted on the thermal stability and emission of gases was thoroughly developed. A new model, Thermal Decomposition Behavior, and novel parameters, the Zero-Decomposition Temperatures, were used to test the thermal stability of the materials under any linear heating rate. The release of gases was monitored by Evolved Gas Analysis with in-line FT-IR analysis. In addition, a kinetic analysis methodology that accounted for variable activation parameters showed that the decomposition process could be driven by …

research product

Effect of the dissolution time into an acid hydrolytic solvent to tailor electrospun nanofibrous polycaprolactone scaffolds

[EN] The hydrolysis of the polycaprolactone (PCL) as a function of the dissolution time in a formic/acetic acid mixture was considered as a method for tailoring the morphology of nanofibrous PCL scaffolds. Hence the aim of this research was to establish a correlation between the dissolution time of the polymer in the acid solvent with the physicochemical properties of the electrospun nanofibrous scaffolds and their further service life behaviour. The physico-chemical properties of the scaffolds were assessed in terms of fibre morphology molar mass and thermal behaviour. A reduction of the molar mass and the lamellar thickness as well as an increase of the crystallinity degree were observed …

research product

Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance

An accelerated hydrothermal degrading test was designed in order to analyse the synergic effect of water and temperature on PLA/sisal biocomposites with and without coupling agent. As well, the physicochemical properties of biocomposites were monitored along the hydrothermal test by means of Scanning Electron Microscopy, Size Exclusion Chromatography and Differential Scanning Calorimetry. The addition of fibre induced higher water absorption capability and promoted physical degradation, as observed in the surface topography. During the processing of biocomposites and throughout the hydrothermal ageing, a reduction of molecular weight due to chain scission was found. As a consequence, a fast…

research product

Protection of high-density polyethylene-silicon composites from ultraviolet-visible photodegradation

[EN] The extent of the ultraviolet¿visible (UV¿vis) photoirradiation effect on high-density polyethylene (HDPE) and HDPE¿sili-con (Si) composites is reported in terms of the addition of Si microparticles at contents of 0.1, 1, and 5 wt %. A standard acceleratedUV-vis exposure was applied over 2750 h, corresponding to 22 months in Florida. Thermogravimetry, differential scanning calorimetry,and Fourier transform infrared spectroscopy were used as reliable techniques for monitoring the quality of the HDPE-Si composites. Theincreasing addition of Si microparticles delayed the photodegradation of the HDPE¿Si composites. Because of their strong light-scattering effects, Si microparticles blocked…

research product

Reduction of Nitrates in Waste Water through the Valorization of Rice Straw: LIFE LIBERNITRATE Project

An improved and more sustainable waste management system is required for successful development of technologies based on renewable sources. Rice straw is submitted to controlled combustion reactions and the produced ashes are chemically treated to produce silica. After a chemical activation step, the activated silica shows potential as an adsorbent agent and will be used to remove the excess of nitrates in groundwater and wells in the area of Alginet (Valencia, Spain), selected as a vulnerable zone within the Nitrates Directive. The demonstration activity aims to have a local impact on municipalities of 200 inhabitants or fewer, decreasing from current nitrate concentrations close to 50 mg/…

research product

Thermal analysis applied to the characterization of degradation in soil of polylactide: I. Calorimetric and viscoelastic analyses

[EN] An accelerated soil burial test has been performed on a commercial polylactide (PLA) for simulating non-controlled disposal. Degradation in soil promotes physical and chemical changes in polylactide properties, which can be characterized by Thermal Analysis techniques. Physical changes occurred in polylactide due to the degradation in soil were evaluated by correlating their calorimetric and visco-elastic properties. It is highly remarkable that each calorimetric scan offers specific and enlightening information. Degradation in soil affects the polylactide chains reorganization. A multimodal melting behavior is observed for buried PLA, degradation in soil also promotes the enlarging th…

research product

Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance

[EN] This paper reports the effects of multiple mechanical recycling on the structure and properties of amorphous polylactide (PLA). The influence of the thermo-mechanical degradation induced by means of five successive injection cycles was initially addressed in terms of macroscopic mechanical properties and surface modification. A deeper inspection on the structure and morphology of PLA was associated to the thermal properties and viscoelastic behaviour. Although FT-IR analysis did not show significant changes in functional groups, a remarkable reduction in molar mass was found by viscometry. PLA remained amorphous throughout the reprocessing cycles, but the occurrence of a cold-crystalli…

research product

Novel silicon microparticles to improve sunlight stability of raw polypropylene

Oxidation of polyolefins by ultraviolet/visible irradiation is a significant limitation for their use in several technological applications. The use of high-tech additives such as silicon microparticles becomes a compositing strategy that can improve the performance of these materials at long-term service conditions. Silicon particles were added to non-additivated raw polypropylene (PP) prepared by hot melt extrusion and subjected to accelerated sunlight irradiation tests. The stability of thermal properties, mechanical performance and thermal decomposition behaviour of composites was evaluated by differential scanning calorimetry, dynamic mechanical thermal analysis and thermogravimetry. T…

research product