0000000000050326

AUTHOR

C. Hoffman

showing 3 related works from this author

The data acquisition system for the ANTARES neutrino telescope

2006

The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

Nuclear and High Energy Physics[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsData managementAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Data filteringData acquisition0103 physical sciences14. Life underwaterElectronics010306 general physicsInstrumentationdata acquisition system; neutrino telescopeRemote sensingAstroparticle physicsPhysicsneutrino telescope data acquisition system[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyneutrino telescopedata acquisition systemComputer data storageFísica nuclearbusiness
researchProduct

The ANTARES Optical Beacon System

2007

ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…

Nuclear and High Energy PhysicsPhotomultiplierPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutrino telescope; optical beacon; time calibrationAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Opticslaw0103 physical sciencesCalibrationtime calibrationAngular resolution14. Life underwateroptical beacon010306 general physicsInstrumentationCherenkov radiationPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]neutrino telescope time calibration optical beacon010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeSITEAstronomyBeaconLIGHTFísica nuclearNeutrinobusiness
researchProduct

First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

2006

In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. T…

Photomultiplierneutrino astronomy; photon detection; underwater detectorPositioning systemInstrumentationAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy Underwater detector Photon detectionFOS: Physical sciencesAstrophysics01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesCalibrationAngular resolution010306 general physicsRemote sensingAstroparticle physicsPhysicsunderwater detector[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomySITEAstronomy and AstrophysicsLIGHTPHOTON DETECTIONNEUTRINO ASTRONOMYFísica nuclearUNDERWATER DETECTORNeutrino astronomy
researchProduct