0000000000050350

AUTHOR

Robert Lahmann

showing 12 related works from this author

The data acquisition system for the ANTARES neutrino telescope

2006

The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

Nuclear and High Energy Physics[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsData managementAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Data filteringData acquisition0103 physical sciences14. Life underwaterElectronics010306 general physicsInstrumentationdata acquisition system; neutrino telescopeRemote sensingAstroparticle physicsPhysicsneutrino telescope data acquisition system[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyneutrino telescopedata acquisition systemComputer data storageFísica nuclearbusiness
researchProduct

IceCube-Gen2: The Window to the Extreme Universe

2020

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HENuclear and High Energy PhysicsActive galactic nucleus010308 nuclear & particles physicsHigh-energy astronomyGravitational wavemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesCosmic ray01 natural sciencesUniverseNeutron star0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsmedia_common
researchProduct

The ANTARES Optical Beacon System

2007

ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…

Nuclear and High Energy PhysicsPhotomultiplierPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutrino telescope; optical beacon; time calibrationAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Opticslaw0103 physical sciencesCalibrationtime calibrationAngular resolution14. Life underwateroptical beacon010306 general physicsInstrumentationCherenkov radiationPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]neutrino telescope time calibration optical beacon010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeSITEAstronomyBeaconLIGHTFísica nuclearNeutrinobusiness
researchProduct

Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope

2005

The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.

Nuclear and High Energy PhysicsPhotomultiplierPhysics - Instrumentation and DetectorsNeutrino detectionNeutrino telescopeFOS: Physical sciences01 natural scienceslarge area photosensor hemispherical photomultiplier neutrino detectionNuclear physicsOpticsIntensive Phase0103 physical sciences14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationAstroparticle physicsPhysics010308 nuclear & particles physicsbusiness.industryHemispherical photomultiplierInstrumentation and Detectors (physics.ins-det)Large area photosensorGlass spheresNeutrino detector95.55.Vj; 85.60.HaFísica nuclearbusinesshemispherical photomultiplier; large area photosensor; neutrino detection
researchProduct

Performance of the front-end electronics of the ANTARES neutrino telescope

2010

ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named Analogue Ring Samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the fu…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsOptical linkDigital dataFOS: Physical sciencesAnalog-to-digital converterNeutrino telescope01 natural sciencesMultiplexinglaw.inventionPhototubeApplication-specific integrated circuitPhotomultiplier tubelawASICs0103 physical sciences14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationPhysics010308 nuclear & particles physicsbusiness.industryASICAstrophysics::Instrumentation and Methods for AstrophysicsElectrical engineeringCIRCUITFront-end electronicsChip[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Física nuclearUNDERWATER DETECTORasic; front-end electronics; neutrino telescope; photomultiplier tubeAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSYSTEMNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The ANTARES telescope neutrino alert system

2012

The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

Optical telescopesPhysics::Instrumentation and DetectorsAstrophysics7. Clean energy01 natural sciencesGamma ray burstsFOLLOW-UP OBSERVATIONSlaw.inventionlawFlaring activeVery high energiesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGAMMA-RAY BURSTS[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsSupernovaNeutrino detectorNeutrino astronomyFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesOptical telescopeTelescopeMuon tracksCoincidentSEARCHDetection methods0103 physical sciencesCore collapse supernovae010306 general physicsOptical follow-upInstrumentation and Methods for Astrophysics (astro-ph.IM)Neutronsantares; neutrino astronomy; optical follow-up; transient sourcesANTARES010308 nuclear & particles physicsGamma raysAstronomyAstronomy and AstrophysicsAlert systemsStarsTransient sources[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Optical signalsPotential sources13. Climate actionFISICA APLICADAHigh Energy Physics::ExperimentNeutrino astronomyGamma-ray burst
researchProduct

Observation of classically 'forbidden' electromagnetic wave propagation and implications for neutrino detection.

2018

Ongoing experimental efforts in Antarctica seek to detect ultra-high energy neutrinos by measurement of radio-frequency (RF) Askaryan radiation generated by the collision of a neutrino with an ice molecule. An array of RF antennas, deployed either in-ice or in-air, is used to infer the properties of the neutrino. To evaluate their experimental sensitivity, such experiments require a refractive index model for ray tracing radio-wave trajectories from a putative in-ice neutrino interaction point to the receiving antennas; this gives the degree of signal absorption or ray bending from source to receiver. The gradient in the density profile over the upper 200 meters of Antarctic ice, coupled wi…

010504 meteorology & atmospheric sciencesWave propagationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciencesElectromagnetic radiationAtomicIce shelfParticle and Plasma Physics0103 physical sciencesddc:530NuclearInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)geographygeography.geographical_feature_categoryultra high energy photons and neutrinos010308 nuclear & particles physicsMolecularAstronomy and AstrophysicsNuclear & Particles PhysicsComputational physicsRay tracing (physics)Radio propagationNeutrino detectorcosmic ray experimentsNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstronomical and Space SciencesRadio wave
researchProduct

Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

2012

The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass …

Nuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Neutrino telescope01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Experiment0103 physical sciencesNeutrinsHigh Energy PhysicsNeutrinos010306 general physicsNeutrino oscillationPhysicsMuonANTARES:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNeutrino oscillations[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologySolar neutrino problemNeutrino astrophysicsCosmic neutrino backgroundNeutrino detectorFISICA APLICADAMeasurements of neutrino speedFísica nuclearHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Physics Letters B
researchProduct

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

2013

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

AstrofísicaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrino experiments; neutrino astronomy; gamma ray bursts theoryPOINT SOURCESPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaREDSHIFTFluxFOS: Physical sciencesAstrophysics01 natural sciencesICECUBEneutrino astronomyneutrino experiments0103 physical sciencesgamma ray bursts theory010303 astronomy & astrophysicsNeutrino experimentsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonGamma ray bursts theory010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygamma ray bursts theory; neutrino astronomy; neutrino experimentsAstronomy and Astrophysicsgamma ray burstsCATALOGRedshiftNeutrino detectorNeutrino astronomyFISICA APLICADAneutrino experimentHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstSYSTEM
researchProduct

A method for detection of muon induced electromagnetic showers with the ANTARES detector

2012

The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earths atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated. © 2012 Elsevier B.V. All rights reserved.

Physics::Instrumentation and DetectorsAtmospheric muonsDecay productsNeutrino telescopeElectromagnetic shower identification01 natural sciences7. Clean energyneutrino telescope electromagnetic shower identification high energy muons energy reconstruction; high energy muons; neutrino telescope; electromagnetic shower identification; energy reconstructionMuon neutrinoNEUTRINO TELESCOPE010303 astronomy & astrophysicsInstrumentationEnergy reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsHigh energy muonNeutrino detectorMuon colliderNeutrino astronomyFísica nuclearNeutrinoNeutrino telescope; Energy reconstruction; High energy muonsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUXNuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Charged current[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayMuon neutrinoNuclear physicsElectromagnetism0103 physical sciencesHigh energy physicsneutrino telescope electromagnetic shower identification high energy muons energy reconstructionInstrumentation and Methods for Astrophysics (astro-ph.IM)MuonANTARES010308 nuclear & particles physicsCharged particles[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]FISICA APLICADATEVPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrino astronomyNeutrino telescopesElectro-magnetic showersHigh energy muons
researchProduct

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

2010

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAtmospheric muonsFOS: Physical sciencesLINECosmic rayPotassium-4001 natural sciencesParticle detectorNuclear physicsPOTASSIUM-40NEUTRINO TELESCOPESatmospheric muons; depth intensity relation; potassium-400103 physical sciencesDepth intensity relation14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPotassium-40DetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsPERFORMANCEDEPTH INTENSITY RELATIONLIGHTNeutrino detector13. Climate actionddc:540Física nuclearHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SYSTEMLepton
researchProduct

Performance of the First ANTARES Detector Line

2009

In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.

MODULEPhysics::Instrumentation and DetectorsFOS: Physical sciencesAstrophysics01 natural sciencesNuclear physicsNEUTRINO TELESCOPESAngular distributionantares; deep-sea; first line; neutrino0103 physical sciencesNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]WATERAngular resolutionNEUTRINO TELESCOPE010306 general physicsATMOSPHERIC MUONSAstroparticle physicsPhysicsMuonANTARES010308 nuclear & particles physicsAstrophysics (astro-ph)DetectorDeep-seaAstronomy and AstrophysicsTime resolutionGeodesyMUON FLUXFirst lineSINGLEFísica nuclearUNDERWATER DETECTORLine (text file)NeutrinoSYSTEM
researchProduct