0000000000052868

AUTHOR

Fabio Maria Montagnino

0000-0002-7621-334x

showing 4 related works from this author

Direct sunlight facility for testing and research in HCPV

2014

A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and ou…

SunlightEngineeringHeliostatbusiness.industryNuclear engineeringMechanical engineeringHeat sinkSolar energySuns in alchemyElectronic equipmentData loggerheliostat High Concentrated PhotoVoltaic module multijunction cellbusiness
researchProduct

Electrical-optical characterization of multijunction solar cells under 2000X concentration

2014

In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties…

Engineeringbusiness.industryParabolic reflectorBand gapAperturePhotovoltaic systemElectroluminescenceConcentration ratioSpectral lineSemiconductorOpticsMultijunction InGaP/InGaAs/Ge solar cells high concentration photovoltaic electroluminescence I-V curveOptoelectronicsbusiness
researchProduct

Performance Analysis of a Prototype High‐Concentration Photovoltaic System Coupled to Silica Optical Fibers

2021

High-concentration photovoltaic (HCPV) systems are one of the most promising technologies for the generation of renewable energy with high-conversion efficiency. Their development is still at an early stage, but the possibility of integrating high-concentration systems into buildings offers new opportunities to achieve the net-zero-energy building goal. Herein, the optical and energetic performance of a hybrid daylighting−HCPV prototype based on pure- or doped-silica optical fibers (OFs) to guide 2000× concentrated sunlight inside the buildings is evaluated. There, the light can either be used to illuminate interior spaces or projected on solar cells to generate electricity. The system equi…

Optical fiberMaterials science020209 energyhigh-concentration photovoltaicssolarization-resistant optical fibers02 engineering and technology7. Clean energylaw.inventionlaw0202 electrical engineering electronic engineering information engineeringMaterials ChemistryElectrical and Electronic EngineeringComputingMilieux_MISCELLANEOUShybrid daylightingHigh concentrationbusiness.industryPhotovoltaic systemSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics0210 nano-technologybusiness
researchProduct

Combined heat and power generation with a HCPV system at 2000 suns

2015

In the framework of the FAE “Fotovoltaico ad Alta Efficienza” (“High Efficiency Photovoltaic”) Research Project funded by the Sicilian Region under the program PO FESR Sicilia 2007/2013 4.1.1.1, we have developed an innovative solar CHP system for the combined production of heat and power at the high concentration level of 2000 suns [1]. This work shows the experimental results obtained on FAE-HCPV modules and analyses the behaviour of the system. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror (with a size of 46x46 = 2116 cm2 in a projection normal to the…

Materials sciencebusiness.industryInGaP/InGaAs/Ge triple-junction solar cellHeat sinkSolar energySolar mirrorSolar cell efficiencyElectricity generationOpticsreflactive opticsHeat transferConcentrating PhotovoltaicOptoelectronicsbusinessElectrical efficiencyThermal energy
researchProduct