0000000000052894
AUTHOR
Mustapha Mokhtar-kharroubi
showing 3 related works from this author
Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry
2017
This work deals with free transport equations with partly diffuse stochastic boundary operators in slab geometry. Such equations are governed by stochastic semigroups in $L^{1}$ spaces$.\ $We prove convergence to equilibrium at the rate $O\left( t^{-\frac{k}{2(k+1)+1}}\right) \ (t\rightarrow +\infty )$ for $L^{1}$ initial data $g$ in a suitable subspace of the domain of the generator $T$ where $k\in \mathbb{N}$ depends on the properties of the boundary operators near the tangential velocities to the slab. This result is derived from a quantified version of Ingham's tauberian theorem by showing that $F_{g}(s):=\lim_{\varepsilon \rightarrow 0_{+}}\left( is+\varepsilon -T\right) ^{-1}g$ exists…
Contractivity results in ordered spaces. Applications to relative operator bounds and projections with norm one
2016
This paper provides various “contractivity” results for linear operators of the form I−C where C are positive contractions on real ordered Banach spaces X. If A generates a positive contraction semigroup in Lebesgue spaces Lp(μ), we show (M. Pierre's result) that A(λ−A)−1 is a “contraction on the positive cone”, i.e. A(λ−A)−1x≤x for all x∈L+p(μ)(λ>0), provided that p⩾2. We show also that this result is not true for 1 ⩽ p<2. We give an extension of M. Pierre's result to general ordered Banach spaces X under a suitable uniform monotony assumption on the duality map on the positive cone X+. We deduce from this result that, in such spaces, I−C is a contraction on X+ for any positive projection…
Form-perturbation theory for higher-order elliptic operators and systems by singular potentials
2020
We give a form-perturbation theory by singular potentials for scalar elliptic operators onL2(Rd)of order 2mwith Hölder continuous coefficients. The form-bounds are obtained from anL1functional analytic approach which takes advantage of both the existence ofm-gaussian kernel estimates and the holomorphy of the semigroup inL1(Rd).We also explore the (local) Kato class potentials in terms of (local) weak compactness properties. Finally, we extend the results to elliptic systems and singular matrix potentials.This article is part of the theme issue ‘Semigroup applications everywhere’.