0000000000053150

AUTHOR

Mary Jane Shultz

Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hy…

research product

Single-crystal I h ice surfaces unveil connection between macroscopic and molecular structure

Physics and chemistry of ice surfaces are not only of fundamental interest but also have important impacts on biological and environmental processes. As ice surfaces—particularly the two prism faces—come under greater scrutiny, it is increasingly important to connect the macroscopic faces with the molecular-level structure. The microscopic structure of the ubiquitous ice Ih crystal is well-known. It consists of stacked layers of chair-form hexagonal rings referred to as molecular hexagons. Crystallographic unit cells can be assembled into a regular right hexagonal prism. The bases are labeled crystallographic hexagons. The two hexagons are rotated 30° with respect to each other. The linkage…

research product