0000000000053515

AUTHOR

Shahanavaj Khan

showing 2 related works from this author

FGFR a promising druggable target in cancer: Molecular biology and new drugs.

2017

Abstract: Introduction: The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. Areas Covered: This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Expert opinion: Most of the TKR share …

0301 basic medicineFibroblast Growth FactorDruggabilityFibroblast growth factorTyrosine-kinase inhibitorReceptor tyrosine kinase0302 clinical medicineNeoplasmsFGFR inhibitorsFGFMolecular Targeted TherapyCancerCancer; FGF; FGFR; FGFR inhibitors; Drug Resistance Neoplasm; Fibroblast Growth Factors; Gene Fusion; Humans; Molecular Targeted Therapy; Mutation; Neoplasms; Protein Kinase Inhibitors; Receptors Fibroblast Growth Factor; Signal Transduction; Hematology; Oncology; Geriatrics and GerontologybiologyFGFRHematologyFGFR inhibitorOncologyFibroblast growth factor receptor030220 oncology & carcinogenesisembryonic structuresSignal transductionbiological phenomena cell phenomena and immunityGene FusionHumanSignal Transductionmusculoskeletal diseasesanimal structuresmedicine.drug_classProtein Kinase Inhibitor03 medical and health sciencesmedicineHumansProtein Kinase InhibitorsCancer; FGF; FGFR; FGFR inhibitorsbusiness.industryCancermedicine.diseaseMolecular biologyReceptors Fibroblast Growth FactorFibroblast Growth Factors030104 developmental biologyDrug Resistance NeoplasmCancer cellMutationbiology.proteinNeoplasmHuman medicineGeriatrics and GerontologybusinessCritical reviews in oncology/hematology
researchProduct

Extracellular vesicles as miRNA nano-shuttles : dual role in tumor progression

2018

[EN] Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic pote…

0301 basic medicineCancer ResearchAngiogenic SwitchLung-CancerBIOLOGIA CELULARMessenger-RNAsSuppressor-CellsDendritic cellsMetastasisLiquid biopsies03 medical and health sciencesExtracellular VesiclesImmune systemSettore BIO/13 - Biologia ApplicatamicroRNAMedicineHumansNanotechnologyPharmacology (medical)miRNAMyelogenous Leukemia-CellsExtracellular vesicles; miRNA; cancer cellsTumor microenvironmentExosome-Mediated transferbusiness.industryCancerProteinsmedicine.diseaseMicrornasMicroRNAs030104 developmental biologyOncologyTumor progressionCancer cellcancer cellsCancer researchDisease ProgressionHuman medicineExtracellular vesiclebusinessMicrovesiclesTargeted oncology
researchProduct