0000000000053699

AUTHOR

Marco Finazzi

showing 7 related works from this author

Harmonic generation in all-dielectric metasurfaces

2023

Nonlinear light generation is a key phenomenon in many optical systems. Recently, the field of nonlinear optics has moved to the miniaturization of conventional bulky components. Among all the new platforms that have been proposed, dielectric nanoscale resonators represent excellent candidates for light generation and manipulation. When arranged in periodic arrays, such high refractive index scattering components become an artificial material called metasurface. Several approaches for designing platforms with enhanced optical nonlinearities at moderate pump intensities have been proposed. In this chapter, we review the most recent results on second- and third-order nonlinear processes in hi…

Harmonic generationNonlinear opticSettore ING-INF/02 - Campi ElettromagneticiCircular dichroismDielectric metasurfaceBound state in the continuum
researchProduct

Tailoring Third-Harmonic Diffraction Efficiency by Hybrid Modes in High-Q Metasurfaces

2021

Metasurfaces are versatile tools for manipulating light; however, they have received little attention as devices for the efficient control of nonlinearly diffracted light. Here, we demonstrate nonlinear wavefront control through third-harmonic generation (THG) beaming into diffraction orders with efficiency tuned by excitation of hybrid Mie-quasi-bound states in the continuum (BIC) modes in a silicon metasurface. Simultaneous excitation of the high-Q collective Mie-type modes and quasi-BIC modes leads to their hybridization and results in a local electric field redistribution. We probe the hybrid mode by measuring far-field patterns of THG and observe the strong switching between (0,-1) and…

bound states in the continuumMechanical Engineeringall-dielectric metasurface bound states in the continuum high-Q metasurface hybrid mode Third-harmonic diffraction wavefront controlhybrid modeBioengineeringSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyGeneral Chemistryhigh-Q metasurface021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural scienceswavefront controlall-dielectric metasurface0103 physical sciencesThird-harmonic diffractionThird-harmonic diffraction; all-dielectric metasurface; bound states in the continuum; high-Q metasurface; hybrid mode; wavefront controlGeneral Materials Science010306 general physics0210 nano-technology
researchProduct

Intravalley spin-flip relaxation dynamics in single-layer WS2

2019

Two-dimensional Transition Metal Dichalcogenides (TMDs) have been widely studied because of the peculiar electronic band structure and the strong excitonic effects [1]. In these materials the large spin-orbit coupling lifts the spin degeneracy of the valence (VB) and the conduction band (CB) giving rise to the A and B interband excitonic transitions. In monolayer WS2, the spins of electrons in the lowest CB and in the highest VB at K/K' point of the Brillouin zone are antiparallel resulting in an intravalley dark exciton state at a lower energy than the bright exciton, see left panel of Fig.1. On the one hand, the presence of dark excitons has been revealed indirectly from the observation o…

PhysicsValence (chemistry)Condensed matter physicsSpinsScatteringExciton02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesBrillouin zoneCondensed Matter::Materials Science0103 physical sciencesSpin-flip010306 general physics0210 nano-technologyElectronic band structure
researchProduct

Real-time observation of the intravalley spin-flip process in single-layer WS2

2019

We use helicity-resolved transient absorption spectroscopy to track intravalley scattering dynamics in monolayer WS2. We find that spin-polarized carriers scatter from upper to lower conduction band by reversing their spin orientation on a sub-ps timescale.

Materials scienceCondensed matter physicsScatteringPhysicsQC1-999MonolayerUltrafast laser spectroscopySettore FIS/01 - Fisica SperimentaleProcess (computing)ReversingSpin-flipSpectroscopySpin-½
researchProduct

Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces

2021

We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

Materials sciencebusiness.industryENHANCED 2ND-HARMONIC GENERATIONPhysics::OpticsNonlinear opticsSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesSignalAtomic and Molecular Physics and Opticsnonlinear optics optical tuning010309 opticsOpticsAmplitudeModulationAttenuation coefficient0103 physical sciences0210 nano-technologybusinessRefractive indexBeam (structure)Optics Letters
researchProduct

Third-harmonic light polarization control in magnetically resonant silicon metasurfaces

2021

Nonlinear metasurfaces have become prominent tools for controlling and engineering light at the nanoscale. Usually, the polarization of the total generated third harmonic is studied. However, diffraction orders may present different polarizations. Here, we design an high quality factor silicon metasurface for third harmonic generation and perform back focal plane imaging of the diffraction orders, which present a rich variety of polarization states. Our results demonstrate the possibility of tailoring the polarization of the generated nonlinear diffraction orders paving the way to a higher degree of wavefront control.

DiffractionEBLSiliconthird harmonic wave front control diffraction orders polarizationFOS: Physical scienceschemistry.chemical_elementPhysics::Optics02 engineering and technology01 natural sciences010309 opticsQuality (physics)Optics0103 physical sciencesnonlinear diffractionWavefrontPhysicsbusiness.industryNonlinear opticsSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyPolarization (waves)Atomic and Molecular Physics and OpticsNonlinear systemmetasurfaceCardinal pointchemistry0210 nano-technologybusinessthird harmonicOptics (physics.optics)Physics - Optics
researchProduct

Manipulating Light with Tunable Nanoantennas and Metasurfaces

2022

The extensive progress in nanofabrication techniques enabled innovative methods for molding light at the nanoscale. Subwavelength structured optical elements and, in general, metasurfaces and metamaterials achieved promising results in several research areas, such as holography, microscopy, sensing and nonlinear optics. Still, a demanding challenge is represented by the development of innovative devices with reconfigurable optical properties. Here, we review recent achievements in the field of tunable metasurface. After a brief general introduction about metasurfaces, we will discuss two different mechanisms to implement tunable properties of optical elements at the nanoscale. In particular…

metasurfacesensorTunabilitynonlinearitySettore ING-INF/02 - Campi Elettromagneticidielectric
researchProduct