0000000000053888
AUTHOR
Ronald Y. Dong
On the blue phase structure of hydrogen-bonded liquid crystals via 19F NMR
Abstract 19 F NMR spectra are simulated for blue phase I of FPHG( St 1.5 ∗ Ap 1.5 ) based on a model of a double-twisted substructure inside cylinders that form a body-centred cubic lattice. A kinetic matrix is included to describe jump processes over quarter pitch lengths. Though the lines in the NMR spectra are broad and featureless, changes in the widths and positions with temperature are well described by the blue phase model structure. The spectra in the chiral nematic N∗ phase are also simulated. Dynamics in the BP I are found to be slower than in the N∗ phase.
Hydrogen-bonded liquid crystals with broad-range blue phases
We report a modular supramolecular approach for the investigation of chirality induction in hydrogen-bonded liquid crystals. An exceptionally broad blue phase with a temperature range of 25 °C was found, which enabled its structural investigation by solid state 19F-NMR studies and allowed us to report order parameters of the blue phase I for the first time.
Chiral mesophases of hydrogen-bonded liquid crystals
The chiral induction in hydrogen-bonded liquid crystals is investigated. The experimental study was accompanied by detailed density functional theory calculations and variable-temperature solid-state deuteron NMR measurements indicating that interactions between the linking groups of the hydrogen-bond accepting unit play a key role in the chiral induction.