0000000000054141

AUTHOR

Sylviane Royer

showing 10 related works from this author

Diastereoselective Synthesis of Dialkylated Bis(phosphino)ferrocenes: Their Use in Promoting Silver-Mediated Nucleophilic Fluorination of Chloroquino…

2017

International audience; The diastereoselective synthesis of dialkylated ferrocenyl bis(phosphane)s bearing aryl, alkyl, and hetero- or polycyclic substituents on the phosphino groups is reported, together with their characterization in the solid state by X-ray structure analysis and in solution by multinuclear NMR spectroscopy. Introduction of various alkyl groups on the ferrocene backbone, namely, tert-butyl, isopropyl, and trimethylsilyl, has a significant influence on the stereoselectivity of the ensuing lithiation/phosphination reactions. Only the introduction of the tert-butyl groups ensures both a high yield and perfect diastereoselectivity, which leads to the exclusive formation of t…

Diastereoselectivitybond formationTrimethylsilylfunctionalized arylone-potelectrophilic fluorinationPhosphanesAlkylationc-h fluorination[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesMedicinal chemistryInorganic Chemistrychemistry.chemical_compoundNucleophileFluorinationOrganic chemistryAlkylpolyphosphane ligandsferrocenyl derivativeschemistry.chemical_classificationp-31 nmr010405 organic chemistryArylHalex reactiondirect arylationreductive elimination[ CHIM.INOR ] Chemical Sciences/Inorganic chemistryNuclear magnetic resonance spectroscopySandwich complexes0104 chemical scienceschemistryFerroceneIsopropyl
researchProduct

Palladium-Catalyzed Direct Arylation of Heteroaromatics with Activated Aryl Chlorides Using a Sterically Relieved Ferrocenyl-Diphosphane

2012

International audience; The palladium-catalyzed direct arylations at C3 or C4 positions of heteroaromatics are known to be more challenging than at C2 or C5 positions. Aryl chlorides are also challenging substrates for direct arylation of heteroaromatics. We observed that in the presence of a palladium-catalyst combining only 0.5 mol % of Pd(OAc)2 with the sterically relieved new ferrocenyl diphosphane Sylphos, the direct arylation at C3 or C4 of oxazoles, a benzofuran, an indole, and a pyrazole was found to proceed in moderate to high yields using a variety of electron deficient aryl chlorides. Turnover numbers up to 176 have been obtained with this catalyst. Assessment of the electron-don…

ligand designSteric effectsC−H bond functionalizationaryl chlorideschemistry.chemical_elementPyrazole010402 general chemistry01 natural sciencesMedicinal chemistryCatalysis[ CHIM.CATA ] Chemical Sciences/Catalysischemistry.chemical_compoundOrganic chemistryDiphosphaneMethyleneBenzofuranIndole test010405 organic chemistryArylferrocenylphosphaneheteroarenes[CHIM.CATA]Chemical Sciences/CatalysisGeneral Chemistrypalladium0104 chemical scienceschemistry13. Climate actionPalladiumACS Catalysis
researchProduct

Copper(I) Iodide Polyphosphine Adducts at Low Loading for Sonogashira Alkynylation of Demanding Halide Substrates: Ligand Exchange Study between Copp…

2010

The prestabilization of copper iodide with a multidentate ferrocenyl phosphine ligand promotes the palladium-catalyzed cross-coupling of demanding halides with phenylacetylene in a selective way. Novel CuI-triphosphine adducts are described in the solid state and in solution. Their use allowed the introduction of the copper iodide cocatalyst in unprecedented low amounts (0.4 to 0.1 mol %) in systems also employing low amounts of “ligand-free” [PdII(η3-allyl)Cl]2 precursor (0.2 to 0.05 mol %). The scope of substrates is reported, and electronically or sterically deactivated bromides were efficiently coupled. Concerning aryl chlorides, electron-poor activated substrates were also coupled usin…

DenticityLigandOrganic Chemistrychemistry.chemical_elementSonogashira couplingHalidePhotochemistryCopperCombinatorial chemistryInorganic Chemistrychemistry.chemical_compoundchemistryPhenylacetylenePhysical and Theoretical ChemistryCopper(I) iodidePalladiumOrganometallics
researchProduct

Palladium C–N bond formation catalysed by air-stable robust polydentate ferrocenylphosphines: a comparative study for the efficient and selective cou…

2014

The arylation of aniline derivatives with dichloroarenes under a low palladium content (below the currently used 5 to 10 mol%) was studied using nine different ferrocenylphosphine ligands, including the easily accessible 1,1′-bis(diphenylphosphino)ferrocene, DPPF. The electron-enriched air-stable tridentate ferrocenylpolyphosphine 1,2-bis(diphenylphosphino)-1′-(diisopropylphosphino)-4-tert-butylferrocene, L5, employed in 2 mol% in combination with 1 mol% [PdCl(η3-C3H5)]2 allows an efficient and selective coupling, while such demanding substrates currently induce chloroarene homocoupling and/or dehalogenation processes. The scope and limitation of the optimized system are explored, with a fo…

Denticitychemistry.chemical_elementHalogenationMedicinal chemistryCatalysisCatalysischemistry.chemical_compoundAnilinechemistryNucleophileFerroceneElectrophileOrganic chemistryPalladiumCatalysis Science & Technology
researchProduct

Direct arylation of heterocycles: the performances of ferrocene-based polyphosphane ligands in palladium-catalyzed C-H bond activation

2010

International audience; The palladium-catalyzed direct arylation of alkylated- furan, thiophene, and thiazole and benzoxazole heterocycles with electronically and sterically deactivated bromoarenes was selectively and efficiently promoted by ferrocenyl polyphosphanes. In this C[BOND]H bond activation reaction of heteroaromatics, the performances of polydentate di-, tri-, and tetraphosphane ligands were compared, showing that the triphosphane 1,1′,2-tris(diphenylphosphino)-4-tert-butylferrocene 3 was the most effective for the coupling. The introduction of more electron-donating (iPr) or electron-withdrawing (furyl) groups on the phosphorus atoms did not improve the ligand performances. The …

Denticitychemistry.chemical_elementCH activation010402 general chemistry01 natural sciencesMedicinal chemistryCatalysisInorganic Chemistrychemistry.chemical_compound[ CHIM.CATA ] Chemical Sciences/CatalysisThiopheneOrganic chemistryChelation[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryThiazoleheterocycles010405 organic chemistryLigandOrganic Chemistry[ CHIM.COOR ] Chemical Sciences/Coordination chemistry[CHIM.CATA]Chemical Sciences/CatalysisBenzoxazolepalladiumhomogeneous catalysis0104 chemical sciencesTriphosphanechemistryligands effectsPalladium
researchProduct

Congested ferrocenyl polyphosphanes bearing electron-donating or electron-withdrawing phosphanyl groups: assessment of metallocene conformation from …

2011

International audience; The synthesis of novel substituted cyclopentadienyl salts that incorporate both a congested branched alkyl group (tert-butyl, (triphenyl)methyl, or tri(4-tert-butyl)phenylmethyl) and a phosphanyl group is reported. The introduction of either electron-withdrawing or electron-donating substituents (furyl, i-propyl, cyclohexyl, tert-butyl) on P atoms was generally achieved in high yield. The modular synthesis of ferrocenyl polyphosphanes from an assembly of these cyclopentadienyl salts was investigated, leading to the formation of new triphosphanes (denoted as 9-12) and diphosphanes (denoted as 14-16). The resulting phosphanes are not sensitive to air or moisture, even …

Models MolecularMagnetic Resonance SpectroscopyStereochemistryMetallocenesPhosphinesMolecular Conformationchemistry.chemical_elementElectronsElectron[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistryChlorobenzenes01 natural sciencesMedicinal chemistryCatalysisCatalysisInorganic Chemistrychemistry.chemical_compoundCyclopentadienyl complexOrganometallic CompoundsFerrous CompoundsPhysical and Theoretical ChemistrySpin (physics)Alkylchemistry.chemical_classification010405 organic chemistry[ CHIM.INOR ] Chemical Sciences/Inorganic chemistry0104 chemical scienceschemistryPolar effectMetallocenePalladiumPalladium
researchProduct

CCDC 1477185: Experimental Crystal Structure Determination

2017

Related Article: Julien Roger, Sylviane Royer, Hélène Cattey, Aleksandr Savateev, Radomyr V. Smaliy, Aleksandr N. Kostyuk, Jean-Cyrille Hierso|2017|Eur.J.Inorg.Chem.||330|doi:10.1002/ejic.201600502

Space GroupCrystallographyCrystal System11'-bis(dimesitylphosphino)-33'-di-t-butylferrocene dichloromethane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1405627: Experimental Crystal Structure Determination

2015

Related Article: Julien Roger, Sylviane Royer, Hélène Cattey, Aleksandr Savateev, Radomyr V. Smaliy, Aleksandr N. Kostyuk, Jean-Cyrille Hierso|2015|CSD Communication|||

Space GroupCrystallographyCrystal System11'-bis(diphenylphosphino)-33'-bis(isopropyl)ferroceneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1405168: Experimental Crystal Structure Determination

2017

Related Article: Julien Roger, Sylviane Royer, Hélène Cattey, Aleksandr Savateev, Radomyr V. Smaliy, Aleksandr N. Kostyuk, Jean-Cyrille Hierso|2017|Eur.J.Inorg.Chem.||330|doi:10.1002/ejic.201600502

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-bis(diphenylphosphino)-33'-bis(trimethylsilyl)ferroceneExperimental 3D Coordinates
researchProduct

CCDC 1405169: Experimental Crystal Structure Determination

2017

Related Article: Julien Roger, Sylviane Royer, Hélène Cattey, Aleksandr Savateev, Radomyr V. Smaliy, Aleksandr N. Kostyuk, Jean-Cyrille Hierso|2017|Eur.J.Inorg.Chem.||330|doi:10.1002/ejic.201600502

11'-bis(5H-benzo[b]phosphindol-5-yl)-33'-di-t-butylferroceneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct