0000000000054661

AUTHOR

Steven P. Armes

How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite?

Polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain transfer (RAFT) polymerization offers a platform technology for the efficient and versatile synthesis of well-defined sterically stabilized block copolymer nanoparticles. Herein we synthesize a series of such nanoparticles with tunable anionic charge density within the stabilizer chains, which are prepared via statistical copolymerization of anionic 2-(phosphonooxy)ethyl methacrylate (P) with non-ionic glycerol monomethacrylate (G). Systematic variation of the P/G molar ratio enables elucidation of the minimum number of phosphate groups per copolymer chain required to promote nanoparticle occlusi…

research product

New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems

Abstract The main objective of this study was to synthesize novel folic acid-functionalized diblock copolymer micelles and evaluate their solubilization of two poorly water-soluble anti-tumor drugs, tamoxifen and paclitaxel, which suffer from low water solubility and/or poor hydrolytic stability. The diblock copolymer consisted of a permanently hydrophilic block comprising 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) residues and a pH-sensitive hydrophobic block comprising 2-(diisopropylamino)ethyl methacrylate (DPA) residues. Folic acid (FA) was conjugated to the end of the MPC block so that this group was located on the micelle periphery. Tamoxifen- and paclitaxel-loaded micelles were…

research product

in vitro biological evaluation of folate-functionalized block copolymer micelles for selective anti-cancer drug delivery.

The main objective of this study was to evaluate the ability of folic acid-functionalized diblock copolymer micelles to improve the delivery and uptake of two poorly water-soluble anti-tumor drugs, tamoxifen and paclitaxel, to cancer cells through folate receptor targeting. The diblock copolymer used in this study comprised a hydrophilic poly[2-(methacryloyloxy)ethyl phosphorylcholine] (MPC) block, carrying at the chain end the folate targeting moiety, and a pH-sensitive hydrophobic poly[2-(diisopropylamino)ethyl methacrylate] (DPA) block (FA-MPC-DPA). The drug-loading capacities of tamoxifen- and paclitaxel-loaded micelles were determined by high performance liquid chromatography and the m…

research product