0000000000054863

AUTHOR

Maija E. Marushchak

Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to a…

research product

Sources of nitrous oxide and fate of mineral nitrogen in sub-Arctic permafrost peat soils

Nitrous oxide (N2O) emissions from permafrost-affected terrestrial ecosystems have received little attention, largely because they have been thought to be negligible. Recent studies, however, have shown that there are habitats in subarctic tundra emitting N2O at high rates, such as bare peat surfaces on permafrost peatlands. The processes behind N2O production in these high-emitting habitats are, however, poorly understood. In this study, we established an in situ 15N-labelling experiment with the main objectives to partition the microbial sources of N2O emitted from bare peat surfaces (BP) on permafrost peatlands and to study the fate of ammonium and nitrate in these soils and in adjacent …

research product

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution…

research product

Additional file 2 of In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

Additional file 2. Fig. S1. Physicochemical composition of tundra soils in Kilpisjärvi, northern Finland. Fig. S2. The microbial diversity of Kilpisjärvi soils as seen using a gene-centric approach. Fig. S3. Genome-resolved metagenomics of tundra soils. Fig. S4. Overview of the microbial diversity in Kilpisjärvi soils based on a genome-resolved approach. Fig. S5. Metabolic potential for denitrification in Stordalen Mire soils. Fig. S6. Phylogeny of a) nirK, b) nirS, c) norB, and d) nosZ sequences from metagenome-assembled genomes (MAGs) recovered from tundra soils in Kilpisjärvi, northern Finland.

research product

A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils : changing the paradigm

The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiomet…

research product

A globally relevant stock of soil nitrogen in the Yedoma permafrost domain

AbstractNitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigaton…

research product

Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils

Nitrous oxide (N2O) emissions from permafrost-affected terrestrial ecosystems have received little attention, largely because they have been thought to be negligible. Recent studies, however, have shown that there are habitats in the subarctic tundra emitting N2O at high rates, such as bare peat (BP) surfaces on permafrost peatlands. Nevertheless, the processes behind N2O production in these high-emission habitats are poorly understood. In this study, we established an in situ 15N-labeling experiment with two main objectives: (1) to partition the microbial sources of N2O emitted from BP surfaces on permafrost peatlands and (2) to study the fate of ammonium and nitrate in these soils and in …

research product

In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

Abstract Background In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. Results We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then sear…

research product

The ABCflux database: Arctic-Boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems

Abstract. Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic-Boreal Zone (ABZ) have provided valuable information, but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic-Boreal CO2 fluxes (ABCflux) that aggregates in-situ measurements of terrestrial net ecosystem CO2 exchange and its derived …

research product

Additional file 1 of In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

Additional file 1. Table S1. Physicochemical information, sequencing statistics, and accession numbers for 69 soil metagenomes from Kilpisjärvi, northern Finland. Table S2. Information on 796 metagenome-assembled genomes (MAGs) recovered from tundra soils in Kilpisjärvi, northern Finland.

research product