0000000000056309

AUTHOR

Narcisa Vrinceanu

Correlation between surface engineering and deformation response of some natural polymer fibrous systems

Surfaces of bamboo derived cellulosic fibrous systems have been modified by air-plasma treatment. Their deformational response was studied to establish the relationship between their three-dimensional profile and permanent deformation as a measure of their comfort properties since the fibrous system made of natural polymer comes into contact with the skin. The composite should have a permanent deformation close to zero, in order to be, in terms of dimensions, as stable as possible. By analyzing the area of 1 cm2 using a Universal Surface Tester (UST), different 3D surface diagrams and surface roughness values were obtained. This type of surface investigation provides relevant information a…

research product

Fundamental and practical aspects concerning the characterization of smart textiles

The research aims towards a novel methodology of ZnO impregnation onto polyamide supports, in order to attain a special inorganic-organic hybrid polymer material, with increased UV-barrier attributes and high hydrophobicity. The experimental approach employed ZnO micro particles powder. Solutions with different concentrations of ZnO powder dispersed in methanol are prepared as anti-UV finishing agent and applied onto polyamide fabric. The responsive behaviour of this complex polymer network to UV irradiation, the photo protective performance and its time stability, also the hydrophobic character are assessed by different characterization techniques. The proposed method has advantages, like:…

research product

Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS)

ABSTRACTIn this paper, laminar nanofluid flow in 3D copper microchannel heat sink (MCHS) with rectangular cross section, and a constant heat flux, has been treated numerically using the computational fluid dynamics software (FLUENT). Results for the temperature and velocity distributions in the investigated MCHS are presented. In addition, experimental and numerical values are compared in terms of friction factors, convective heat transfer coefficients, wall temperature and pressure drops, for various particle volume concentrations and Reynolds numbers. The numerical results show that enhancing the heat flux has a very weak effect on the heat transfer coefficient for pure water, but an appr…

research product

UV Protection: Historical Perspectives and State‐of‐the‐Art Achievements

research product

Zinc oxide application in the textile industry: surface tailoring and water barrier attributes as parameters with direct implication in comfort performance

The present study focuses on surface tailoring and water barrier attributes of zinc oxide (ZnO)-polyester composite textile materials. The surface properties, such as surface topography and roughness, composite compositions as well as thermal stability of ZnO-100% polyester textile composite materials treated through a padding process with different concentrations of ZnO dispersions as active agent in water and methanol were studied. The results show that 3% ZnO-textile composite material have enhanced water barrier properties compared with the other compositions; a fact which promises improved properties in terms of comfort. ZnO modification of polyester surfaces leads to a dramatic decre…

research product

New Evidence of the Enhanced Elimination of a Persistent Drug Used as a Lipid Absorption Inhibitor by Advanced Oxidation with UV-A and Nanosized Catalysts

This work demonstrates new evidence of the efficient destruction and mineralization of an emergent organic pollutant using UV-A and titanium nanosized catalysts. The target compound considered in this work is the primary metabolite of a lipid regulator drug, clofibrate, identified in many studies as refractory during conventional wastewater treatment. The photocatalytic performance study was carried out in batch mode at laboratory scale, in aqueous suspension. Kinetic data showed that titanium dioxide P25 Aeroxide® exhibits the highest photocatalytic efficiency compared to the other investigated catalysts. Pollutant degradation and mineralization efficiencies strongly increased when decreas…

research product

A Controversial Research Approach: How a Polymer Coated Nanoceria-Based System Can Have Antibacterial Behavior

research product

On the solution of a parabolic PDE involving a gas flow through a semi-infinite porous medium

Abstract Taking as start point the parabolic partial differential equation with the respective initial and boundary conditions, the present research focuses onto the flow of a sample of waste-water derived from a standard/conventional dyeing process. In terms of a highly prioritized concern, meaning environment decontamination and protection, in order to remove the dyes from the waste waters, photocatalyses like ZnO or TiO2 nanoparticles were formulated, due to their high surface energy which makes them extremely reactive and attractive. According to the basics of ideal fluid, the key point is the gas flow through an ideal porous pipe consisting of nanoparticles bound one to each other, for…

research product

Darcy–Forchheimer Magnetized Nanofluid flow along with Heating and Dissipation Effects over a Shrinking Exponential Sheet with Stability Analysis

Nanoparticles have presented various hurdles to the scientific community during the past decade. The nanoparticles dispersed in diverse base fluids can alter the properties of fluid flow and heat transmission. In the current examination, a mathematical model for the 2D magnetohydrodynamic (MHD) Darcy–Forchheimer nanofluid flow across an exponentially contracting sheet is presented. In this mathematical model, the effects of viscous dissipation, joule heating, first-order velocity, and thermal slip conditions are also examined. Using similarity transformations, a system of partial differential equations (PDEs) is converted into a set of ordinary differential equations (ODEs). The problem is …

research product

New Alternative in the Methodology of Extraction and Dyeing with Active Molecules Derived from Vegetal Sources

Abstract The general objective of this study refers to the identification of a sustainable and physical methodology of extraction of active compounds, envisaging the preservation of the high purity active natural dye molecule from nut shell (juglone), even under the conditions of an extraction performed in a mixt solvent medium (water-ethanol). The second major objective of the study consists of the application of these above mentioned dyes onto natural and synthetic substrates, thus making a correlation between their colour attributes and the fibrous composition of the substrates they are applied on. The motivation of this research was given by the identification of an improved extraction …

research product

Health-Improved Textiles Obtained by Heat Surface Ecodyeing Treatments

The central idea of the present research aims at achieving textile substrates through an efficient inclusion of a wild black cherry extract into the grafting agent-monochlorotriazinyl-β-cyclodextrin (MCT-β-CD). The methodology consists in a permanent/irreversible entrapment onto the fibres surface of the natural extract through inclusion mechanism. Exhaustion and sonication dyeing procedures were used alternatively. The obtained materials were characterized, by FT-IR and BET analysis. The experimental results reveal good adsorptive feature of the samples, due to a higher specific surface created by the inclusion complex (MCT-β-CD-dye pigment). An efficient blocking of the natural dye pigmen…

research product

Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrat…

research product