0000000000059976

AUTHOR

Stefanie Leuchtenberger

P4–286: Secretion of the soluble APP ectodomain (APPS) is not affected by the non–steroidal anti–inflammatory drugs ibuprofen and indomethacin in primary neuronal cultures

research product

Nonsteroidal Anti-Inflammatory Drugs and Ectodomain Shedding of the Amyloid Precursor Protein

<i>Background:</i> Epidemiological studies have suggested that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer’s disease (AD). Several mechanisms have been proposed to explain these findings including increased shedding of the soluble ectodomain of the amyloid precursor protein (sAPP), which functions as a neurotrophic and neuroprotective factor in vitroand in vivo. <i>Objective:</i> To clarify whether NSAIDs consistently stimulate sAPP secretion. <i>Methods:</i> 293-EBNA cells with stable overexpression of an APP-alkaline phosphatase fusion protein (APP-AP), SH-SY5Y and PC12 cells or prim…

research product

Inhibitors of Rho-kinase modulate amyloid-β (Aβ) secretion but lack selectivity for Aβ42

Certain non-steroidal anti-inflammatory drugs (NSAIDs) preferentially inhibit production of the amyloidogenic Abeta42 peptide, presumably by direct modulation of gamma-secretase activity. A recent report indicated that NSAIDs could reduce Abeta42 by inhibition of the small GTPase Rho, and a single inhibitor of Rho kinase (ROCK) mimicked the effects of Abeta42-lowering NSAIDs. To investigate whether Abeta42 reduction is a common property of ROCK inhibitors, we tested commercially available compounds in cell lines that were previously used to demonstrate the Abeta42-lowering activity of NSAIDs. Surprisingly, we found that two ROCK inhibitors reduced total Abeta secretion in a dose-dependent m…

research product

Independent Generation of Aβ42 and Aβ38 Peptide Species by γ-Secretase

Proteolytic processing of the amyloid precursor protein by beta- and gamma-secretase generates the amyloid-beta (Abeta) peptides, which are principal drug targets in Alzheimer disease therapeutics. gamma-Secretase has imprecise cleavage specificity and generates the most abundant Abeta40 and Abeta42 species together with longer and shorter peptides such as Abeta38. Several mechanisms could explain the production of multiple Abeta peptides by gamma-secretase, including sequential processing of longer into shorter Abeta peptides. A novel class of gamma-secretase modulators (GSMs) that includes some non-steroidal anti-inflammatory drugs has been shown to selectively lower Abeta42 levels withou…

research product

Insensitivity to Aβ42-lowering Nonsteroidal Anti-inflammatory Drugs and γ-Secretase Inhibitors Is Common among Aggressive Presenilin-1 Mutations

Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the P…

research product

Nonsteroidal Anti-inflammatory Drugs (NSAIDs) and Derived Aβ42-Lowering Molecules for Treatment and Prevention of Alzheimer's Disease (AD)

research product

α-secretase mediated conversion of the amyloid precursor protein derived membrane stub C99 to C83 limits Aβ generation

The Swedish mutation within the amyloid precursor protein (APP) causes early-onset Alzheimer's disease due to increased cleavage of APP by BACE1. While beta-secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild-type APP occurs mainly in endocytic compartments. However, we show that liberation of Abeta from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall beta-secretase cleaved soluble APP released from APP(swe) secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Abeta secretion. We point out t…

research product

Selective Modulation of Aβ42 Production in Alzheimers Disease: Non-Steroidal Anti-Inflammatory Drugs and Beyond

The amyloid-β (Aβ) peptides and in particular the longer, highly amyloidogenic isoform Aβ42 are believed by many to be the central disease-causing agents in Alzheimers disease (AD). Consequently, academic and pharmaceutical laboratories have focused on elucidating the mechanisms of Aβ production and developing strategies to diminish Aβ formation for treatment or prevention of AD. The most substantial advances have been made with respect to inhibitors of the γ-secretase enzyme, which catalyzes the final step in the generation of Aβ from the amyloid precursor protein (APP). Highly potent γ-secretase inhibitors which suppress production of all Aβ peptides are available today. However, due to t…

research product

O1–02–06: Genetic dissection of the PS1–ΔExon9 mutation and its attenuated response to Aβ42–lowering NSAIDs

research product

P4‐192: Mechanism of γ‐secretase cleavage: Evidence for independent generation of Aβ42 and Aβ38 peptide species

research product

Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer's disease?

Curcumin binds to the amyloid beta peptide (Abeta) and inhibits or modulates amyloid precursor protein (APP) metabolism. Therefore, curcumin-derived isoxazoles and pyrazoles were synthesized to minimize the metal chelation properties of curcumin. The decreased rotational freedom and absence of stereoisomers was predicted to enhance affinity toward Abeta(42) aggregates. Accordingly, replacement of the 1,3-dicarbonyl moiety with isosteric heterocycles turned curcumin analogue isoxazoles and pyrazoles into potent ligands of fibrillar Abeta(42) aggregates. Additionally, several compounds are potent inhibitors of tau protein aggregation and depolymerized tau protein aggregates at low micromolar …

research product