0000000000060057
AUTHOR
E. Barrientos
Metric-affine f(R,T) theories of gravity and their applications
We study $f(R,T)$ theories of gravity, where $T$ is the trace of the energy-momentum tensor ${T}_{\ensuremath{\mu}\ensuremath{\nu}}$, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine $f(R)$ relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservatio…
Metric-affine f(R,T) theories of gravity and their applications
We study f(R,T) theories of gravity, where T is the trace of the energy-momentum tensor T_{\mu\nu}, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f(R) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the non-conservation of the energy-momentum tensor, wh…