0000000000060521
AUTHOR
Oleg Lisovski
Electronic and optical properties of pristine, N- and S-doped water-covered TiO2 nanotube surfaces
For rational design and improvement of electronic and optical properties of water-splitting photocatalysts, the ability to control the band edge positions relative to the water redox potentials and the photoresponse as a function of environmental conditions is essential. We combine ab initio molecular dynamics simulations with ab initio many-body theoretical calculations to predict the bandgap and band edge energies, as well as the absorption spectrum of pristine and N- and S-doped TiO2 nanotubes using the DFT+U and G0W0 approaches. Both levels of theory show similar trends, and N+S-codoping appears to be the optimal system for photocatalytic water splitting both in dry and humid conditions…
First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts
This study was supported by the EC ERA.Net RUS Plus project No. 237 WATERSPLIT as well as Russian Basic Research Foundation No. 16-53-76019. S.K. and E.S. furthermore gratefully acknowledge computing time granted by the Center for Computational Sciences and Simulation (CCSS) of the Universitaẗ Duisburg-Essen and the supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1 FUGG) provided by the Zentrum für Informations-und Mediendienste (ZIM). E.S. is also grateful for support by the Cluster of Excellence RESOLV (EXC1069) funded by the Deutsche Forschungsgemeinschaft.
First-principles calculations of point defects in inorganic nanotubes
The first-principles calculations have been performed to investigate the ground-state properties of monoperiodic boron nitride (BN), TiO2, and SrTiO3 single-walled nanotubes (SW NTs) containing extrinsic point defects. The hybrid exchange–correlation functionals PBE, B3LYP, and B3PW within the framework of density functional theory (DFT) have been applied for large-scale ab initio calculations on NTs with the following substitutional impurities: AlB, PN, GaB, AsN, InB, and SbN in the BN NT, as well as CO, NO, SO, and FeTi in the TiO2 and SrTiO3 NTs, respectively. The variations in formation energies obtained for equilibrium defective nanostructures allow us to predict the most stable compos…
Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach
We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence…
C-, N-, S-, and Fe-Doped TiO2 and SrTiO3 Nanotubes for Visible-Light-Driven Photocatalytic Water Splitting: Prediction from First Principles
The ground state electronic structure and the formation energies of both TiO2 and SrTiO3 nanotubes (NTs) containing CO, NO, SO, and FeTi substitutional impurities are studied using first-principles calculations. We observe that N and S dopants in TiO2 NTs lead to an enhancement of their visible-light-driven photocatalytic response, thereby increasing their ability to split H2O molecules. The differences between the highest occupied and lowest unoccupied impurity levels inside the band gap (HOIL and LUIL, respectively) are reduced in these defective nanotubes down to 2.4 and 2.5 eV for N and S doping, respectively. The band gap of an NO+SO codoped titania nanotube is narrowed down to 2.2 eV …
Quantum chemical simulations of doped ZnO nanowires for photocatalytic hydrogen generation
Zinc oxide (ZnO) is considered in general as a promising material for solar water splitting. Its wurtzite-structured bulk samples, however, can be considered as active for photocatalytic applications only under UV irradiation, where they possess ∼1% efficiency of sunlight energy conversion due to their wide band gap (3.4 eV). Although pristine ZnO nanowires (NWs) possess noticeably narrower band gaps than the bulk, the tendency of band gap reduction with increasing NW diameter is insufficient, and further modification is required. We have contributed to filling this gap by performing a series of ab initio calculations on ZnO NWs of different diameters (dNW), which are mono-doped by metal (A…
Back Cover: First-principles calculations of point defects in inorganic nanotubes (Phys. Status Solidi B 4/2013)
Ab initio simulations on N and S co-doped titania nanotubes for photocatalytic applications
In this paper we present the results of quantum chemical modeling for energetically stable anatase (001) TiO2 nanotubes, undoped, doped, and codoped with N and S atoms. We calculate the electronic structure of one-dimensional (1D) nanotubes and zero-dimensional (0D) atomic fragments cut out from these nanotubes, employing hybrid density functional theory with a partial incorporation of an exact, nonlocal Hartree–Fock exchange within the formalism of the linear combination of atomic orbitals, as implemented in both CRYSTAL and NWChem total energy codes. Structural optimization of 1D nanotubes has been performed using CRYSTAL09 code, while the cut-out 0D fragments have been modelled using the…
Validation of a constrained 2D slab model for water adsorption simulation on 1D periodic TiO2 nanotubes
Abstract Solar light driven hydrogen evolution is one focus of modern materials research. Among the different emerging technologies, particular interest is devoted towards metal oxide photocatalysts in the form of various 1D nanostructures. Presently, the mismatch between regular structures that can be synthesized and the largest structures that are feasible for computer simulation is still very large. For example, an in-depth study of water adsorption on nanotube (NT) surfaces requires, in addition to DFT calculations, molecular dynamics simulations to take into account the disordered nature of the aqueous phase. To completely immerse even a very thin nanotube into an aqueous system requir…
Ab initio calculations of doped TiO2 anatase (101) nanotubes for photocatalytical water splitting applications
Abstract TiO 2 (titania) is one of the promising materials for photocatalytic applications. In this paper we report on recently obtained theoretical results for N and S doped, as well as N+S co-doped 6-layer (101) anatase nanotube (NT). First principles calculations in our study have been performed using a modified B3LYP hybrid exchange-correlation functional within density functional theory (DFT). Here we discuss the energy of defect formation mechanism and electronic band structure for nanotubes under study. We also report on influence of dopant concentration on the NT's band structure and discuss the defect–defect interactions.
2D Slab Models of Nanotubes Based on Tetragonal TiO2 Structures: Validation over a Diameter Range
This research was funded by the M-ERA.NET project ?Multiscale computer modelling, synthesis and rational design of photo(electro)catalysts for efficient visible-light-driven seawater splitting? (CatWatSplit). Institute of Solid State Physics, University of Latvia as the Center of Excel-lence has received funding from the European Union?s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.
2D slab models of TiO2 nanotubes for simulation of water adsorption: Validation over a diameter range
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2019/2 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART 2 .
Doped 1D Nanostructures of Transition-metal Oxides: First-principles Evaluation of Photocatalytic Suitability
CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations
Calculations were performed using Latvian Super Cluster (LASC), located in Center of Excellence at Institute of Solid State Physics, the University of Latvia, which is supported by European Union Horizon2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2. The authors would like to express their gratitude for funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768789 (CO2EXIDE project). In the last stage of investigation and during the preparation of the publication, the authors were assisted by the postdoc D.B. with his own funding from project No. 1.1.1.2/VIAA/l/16/147 (…