0000000000061163

AUTHOR

Peter Petreczky

showing 6 related works from this author

Temperature dependence of η/s of strongly interacting matter: Effects of the equation of state and the parametric form of (η/s)(T)

2020

We investigate the temperature dependence of the shear viscosity to entropy density ratio $\ensuremath{\eta}/s$ using a piecewise linear parametrization. To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{{s}_{\mathrm{NN}}}=200$ GeV and $\mathrm{Pb}+\mathrm{Pb}$ collisions at 2.76 TeV and 5.02 TeV, using a $2+1\mathrm{D}$ hydrodynamical model with the Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) initial state. We provide three new parametrizations of the equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use them and t…

Physics010308 nuclear & particles physicsShear viscosityHadronApproxAtmospheric temperature range01 natural sciencesEntropy densityLattice (order)0103 physical sciencesNuclear Experiment010306 general physicsParametric equationNuclear theoryMathematical physicsPhysical Review C
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Quarkonium spectral functions with complex potential

2011

Abstract We study quarkonium spectral functions at high temperatures using a potential model with complex potential. The real part of the potential is constrained by the lattice QCD data on static quark anti-quark correlation functions, while the imaginary part of the potential is taken from perturbative calculations. We find that the imaginary part of the potential has significant effect on quarkonium spectral functions, in particular, it leads to the dissolution of the 1S charmonium and excited bottomonium states at temperatures about 250 MeV and melting of the ground state bottomonium at temperatures slightly above 450 MeV.

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsSpectral representationHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyLattice field theoryLattice QCDQuarkoniumCorrelation function (statistical mechanics)Excited stateHigh Energy Physics::ExperimentGround stateNuclear Physics A
researchProduct

Quark number susceptibilities at high temperatures

2013

We calculate second and fourth order quark number susceptibilities for 2+1 flavor QCD in the high temperature region. In our study we use two improved staggered fermion formulations, namely the highly improved staggered quark formulation, and the so-called p4 formulation, as well as several lattice spacings. Second order quark number susceptibilities are calculated using both improved staggered fermion formulations, and we show that in the continuum limit the two formulations give consistent results. The fourth order quark number susceptibilities are studied only using the p4 formulation and at non-zero lattice spacings. We compare our results on quark number susceptibilities with recent we…

PhysicsQuarkQuantum chromodynamicsNuclear and High Energy PhysicsTop quarkParticle physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesDown quarkTop quark condensateHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicsQuark–gluon plasmaUp quarkStaggered fermionCondensed Matter::Strongly Correlated ElectronsPhysical Review D
researchProduct

Temperature dependence of η/s : uncertainties from the equation of state

2018

We perform a global model-to-data comparison on Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and Pb+Pb collisions at $2.76$ TeV and $5.02$ TeV, using a 2+1D hydrodynamics model with the EKRT initial state and a shear viscosity over entropy density ratio $(\eta/s)(T)$ with a linear $T$ dependence. To quantify the amount of uncertainty due to the choice of the equation of state (EoS), we compare analysis results based on four different EoSs: the well known $s95p$ parametrisation, an updated parametrisation based on the same list of particles in hadron resonance gas, but using recent lattice results for the partonic part of the EoS, and two new parametrisations based on the Particle Data Group …

PhysicsParticle physicsnucl-thNuclear Theory010308 nuclear & particles physicsShear viscosityHadronParticle Data Grouphep-phhiukkasfysiikka01 natural sciences114 Physical sciencesEntropy densityHigh Energy Physics - PhenomenologyNuclear Physics - Theory0103 physical sciencesEntropy (information theory)High Energy Physics::Experiment010306 general physicsNuclear ExperimentNuclear theoryParametrizationParticle Physics - Phenomenology
researchProduct

Temperature dependence of eta/s of strongly interacting matter : Effects of the equation of state and the parametric form of (eta/s)(T)

2020

We investigate the temperature dependence of the shear viscosity to entropy density ratio $\eta/s$ using a piecewise linear parametrization. To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and Pb+Pb collisions at $2.76$ TeV and $5.02$ TeV, using a 2+1D hydrodynamical model with the EKRT initial state. We provide three new parametrizations of the equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use them and the widely used $s95p$ parametrization to explore the uncertainty in the analysis due to the choice of the eq…

High Energy Physics - Phenomenologynucl-thNuclear TheoryNuclear Physics - Theoryhep-phHigh Energy Physics::ExperimentNuclear Experiment114 Physical sciencesParticle Physics - Phenomenology
researchProduct