0000000000061942

AUTHOR

Christine Davies

0000-0003-2884-0514

showing 7 related works from this author

Improving the kinetic couplings in lattice nonrelativistic QCD

2019

We improve the non-relativistic QCD (NRQCD) action by comparing the dispersion relation to that of the continuum through $\mathcal{O}(p^6)$ in perturbation theory. The one-loop matching coefficients of the $\mathcal{O}(p^4)$ kinetic operators are determined, as well as the scale at which to evaluate $\alpha_s$ in the $V$-scheme for each quantity. We utilise automated lattice perturbation theory using twisted boundary conditions as an infrared regulator. The one-loop radiative corrections to the mass renormalisation, zero-point energy and overall energy-shift of an NRQCD $b$-quark are also found. We also explore how a Fat$3$-smeared NRQCD action and changes of the stability parameter $n$ aff…

Quantum chromodynamicsQuarkPhysics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical scienceshep-latKinetic energy01 natural sciencesComputer Science::Digital LibrariesGluonRenormalizationHigh Energy Physics - LatticeLattice (order)0103 physical sciencesHigh Energy Physics::ExperimentVacuum polarization010306 general physicsGluon fieldMathematical physicsPhysical Review
researchProduct

Determination of m¯b/m¯c and m¯b from nf=4 lattice QCD+QED

2021

We extend HPQCD's earlier ${n}_{f}=2+1+1$ lattice-QCD analysis of the ratio of $\overline{\mathrm{MS}}$ masses of the $b$ and $c$ quark to include results from finer lattices (down to 0.03 fm) and a new calculation of QED contributions to the mass ratio. We find that ${\overline{m}}_{b}(\ensuremath{\mu})/{\overline{m}}_{c}(\ensuremath{\mu})=4.586(12)$ at renormalization scale $\ensuremath{\mu}=3\text{ }\text{ }\mathrm{GeV}$. This result is nonperturbative. Combining it with HPQCD's recent lattice $\mathrm{QCD}+\mathrm{QED}$ determination of ${\overline{m}}_{c}(3\text{ }\text{ }\mathrm{GeV})$ gives a new value for the $b$-quark mass: ${\overline{m}}_{b}(3\text{ }\text{ }\mathrm{GeV})=4.513(2…

QuarkQuantum chromodynamicsPhysicsParticle physics010308 nuclear & particles physicsComputer Science::Information RetrievalHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Lattice QCDMass ratio01 natural sciencesRenormalizationLattice (order)0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

Improved Vcs determination using precise lattice QCD form factors for D→Kℓν

2021

We provide a 0.8%-accurate determination of Vcs from combining experimental results for the differential rate of D→K semileptonic decays with precise form factors that we determine from lattice QCD. This is the first time that Vcs has been determined with an accuracy that allows its difference from 1 to be seen. Our lattice QCD calculation uses the highly improved staggered quark (HISQ) action for all valence quarks on gluon field configurations generated by the MILC Collaboration that include the effect of u, d, s, and c HISQ quarks in the sea. We use eight gluon field ensembles with five values of the lattice spacing ranging from 0.15 fm to 0.045 fm and include results with physical u/d q…

QuarkPhysicsParticle physics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyElectroweak interactionLattice QCD01 natural sciencesStandard ModelLattice constant0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsGluon fieldLeptonPhysical Review
researchProduct

Hindered M1 radiative decay ofϒ(2S)from lattice NRQCD

2015

We present a calculation of the hindered M1 $\mathrm{\ensuremath{\Upsilon}}(2S)\ensuremath{\rightarrow}{\ensuremath{\eta}}_{b}(1S)\ensuremath{\gamma}$ decay rate using lattice nonrelativistic quantum chromodynamics. The calculation includes spin-dependent relativistic corrections to the NRQCD action through $\mathcal{O}({v}^{6})$ in the quark's relative velocity, relativistic corrections to the leading order current which mediates the transition through the quark's magnetic moment, radiative corrections to the leading spin-magnetic coupling and for the first time a full error budget. We also use gluon field ensembles at multiple lattice spacing values, all of which include $u$, $d$, $s$ and…

QuarkQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsLattice constantBranching fractionHigh Energy Physics::LatticeLattice (order)Relative velocityHigh Energy Physics::ExperimentVacuum polarizationBottom quarkPhysical Review D
researchProduct

Bottomonium precision tests from full lattice QCD: Hyperfine splitting, ϒ leptonic width, and b quark contribution to e+e−→hadrons

2021

We calculate the mass difference between the $\mathrm{\ensuremath{\Upsilon}}$ and ${\ensuremath{\eta}}_{b}$ and the $\mathrm{\ensuremath{\Upsilon}}$ leptonic width from lattice QCD using the highly improved staggered quark formalism for the $b$ quark and including $u$, $d$, $s$ and $c$ quarks in the sea. We have results for lattices with lattice spacing as low as 0.03 fm and multiple heavy quark masses, enabling us to map out the heavy quark mass dependence and determine values at the $b$ quark mass. Our results are ${M}_{\mathrm{\ensuremath{\Upsilon}}}\ensuremath{-}{M}_{{\ensuremath{\eta}}_{b}}=57.5(2.3)(1.0)\text{ }\text{ }\mathrm{MeV}$ (where the second uncertainty comes from neglect of …

Quantum chromodynamicsPhysicsQuarkParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHadronLattice QCDCorrelation function (quantum field theory)01 natural sciencesBottom quark0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct

The anomalous magnetic moment of the muon in the Standard Model

2020

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

Standard ModelNuclear Theorymagnetichigher-orderPhysics beyond the Standard ModelGeneral Physics and Astronomynucl-ex01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Subatomic Physicsquantum electrodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Vacuum polarizationNuclear Experiment (nucl-ex)Nuclear Experimentfundamental constant: fine structurePhysicsQuantum chromodynamicsQEDAnomalous magnetic dipole momentnew physicsJ-PARC LabHigh Energy Physics - Lattice (hep-lat)Electroweak interactionlattice field theoryParticle Physics - Latticehep-phObservableHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticle Physics - ExperimentParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-th530 Physicsdispersion relationg-2Lattice field theoryFOS: Physical scienceshep-latnonperturbative[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530Muon magnetic momentNuclear Theory (nucl-th)High Energy Physics - Latticemuonquantum chromodynamics0103 physical sciencesddc:530Nuclear Physics - Experiment010306 general physicsactivity reportperturbation theoryParticle Physics - PhenomenologyMuonmuon: magnetic momentelectroweak interaction[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hep-ex010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringanomalous magnetic moment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentPhysics Reports
researchProduct