0000000000064105

AUTHOR

Roberta Santoro

Line element-less method (LEM) for beam torsion solution (truly no-mesh method)

In this paper a new numerical method for finding approximate solutions of the torsion problem is proposed. The method takes full advantage of the theory of analytic complex function. A new potential function directly in terms of shear stresses is proposed and expanded in the double-ended Laurent series involving harmonic polynomials. A novel element-free weak form procedure, labelled Line Element-Less Method (LEM), has been developed imposing that the square of the net flux across the border is minimum with respect to coefficients expansion. Numerical implementation of the LEM results in systems of linear algebraic equations involving symmetric and positive-definite matrices without resorti…

research product

Path Integral Solution of non-linear systems under Poisson White Noise processes

research product

Path integral solution handled by Fast Gauss Transform

Abstract The path integral solution method is an effective tool for evaluating the response of non-linear systems under Normal White Noise, in terms of probability density function (PDF). In this paper it has been observed that, using short-time Gaussian approximation, the PDF at a given time instant is the Gauss Transform of the PDF at an earlier close time instant. Taking full advantage of the so-called Fast Gauss Transform a new integration method is proposed. In order to overcome some unsatisfactory trends of the classical Fast Gauss Transform, a new version termed as Symmetric Fast Gauss Transform is also proposed. Moreover, extensions to the two Fast Gauss Transform to MDOF systems ar…

research product

Accuracy of the finite difference method in stochastic setting.

In this paper we study the accuracy of the finite difference method when the finite difference method is applied to approximately analyze the structure.

research product

CVBEM solution for De Saint-Venant orthotropic beams under coupled bending and torsion

The aim of this paper is to provide a solution for the coupled flexure–torsion De Saint Venant problem for orthotropic beams taking full advantage of the complex variable boundary element method (CVBEM) properly extended using a complex potential function whose real and imaginary parts are related to the shear stress components, the orthotropic ratio and the Poisson coefficients. The proposed method returns the complete stress field and the unitary twist rotation of the cross section at once by performing only line integrals. Numerical applications have been reported to show the validity and the efficiency of the proposed modified CVBEM to handle shear stress problems in the presence of ort…

research product

Rollio delle navi in presenza di onde modellate come processi gaussiani e poissoniani agenti simultaneamente.

Obiettivo del presente lavoro è l’estensione del metodo della path integral solution (PIS) per lo studio della dinamica del rollio delle navi in presenza di onde modellate come processi gaussiani e poissionani agenti simultaneamente. Si è proceduto dapprima a mostrare come la PIS consenta di valutare l’evoluzione temporale della funzione densità di probabilità (PDF) del processo di risposta, applicando il metodo ad equazioni differenziali stocastiche soggette a forzanti esterne gaussiane e poissoniane. Successivamente si è trattato il caso di un sistema non lineare soggetto ad entrambi i rumori gaussiano e poissoniano agenti contestualmente. Si è infine affrontato sia analiticamente che num…

research product

Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM

This paper provides solutions for De Saint-Venant torsion problem on a beam with arbitrary and uniform cross-section. In particular three methods framed into complex analysis have been considered: Complex Polynomial Method (CPM), Complex Variable Boundary Element Method (CVBEM) and Line Element-less Method (LEM), recently proposed. CPM involves the expansion of a complex potential in Taylor series, computing the unknown coefficients by means of collocation points on the boundary. CVBEM takes advantage of Cauchy’s integral formula that returns the solution of Laplace equation when mixed boundary conditions on both real and imaginary parts of the complex potential are known. LEM introduces th…

research product

Filippo Meli e gli altri: il problema della Natività di Caravaggio di Palermo

research product

Reliability of structural reliability estimation

research product

Non-stationary dynamic analysis of random structures via virtual distortion method

research product

The Line Element-less Method Analysis of orthotropic beam for the De Saint Venant torsion problem

Abstract This paper deals with the extension of a novel numerical technique, labelled line element-less method (LEM), in order to provide approximate solutions of the De Saint Venant torsion problem for orthotropic beams having simply and multiply connected cross-section. A suitable transformation of coordinates allows to take full advantage of the theory of analytic complex functions as in the isotropic case. A complex potential function analytic in all the transformed domain whose real and imaginary parts are related to the shear stress components and to the orthotropic ratio is introduced and expanded in the double-ended Laurent series involving harmonic polynomials. An element-free weak…

research product

Complex analysis for the solution of torsion problems: a comparison among three methods

research product

Random Vibrations of Uncertain Linearly Elastic Trusses

research product

The Saint-Venant cylinder under shear forces: Harmonic polynomial solution

research product

Path integral solution for non-linear system enforced by Poisson White Noise

Abstract In this paper the response in terms of probability density function of non-linear systems under Poisson White Noise is considered. The problem is handled via path integral (PI) solution that may be considered as a step-by-step solution technique in terms of probability density function. First the extension of the PI to the case of Poisson White Noise is derived, then it is shown that at the limit when the time step becomes an infinitesimal quantity the Kolmogorov–Feller (K–F) equation is fully restored enforcing the validity of the approximations made in obtaining the conditional probability appearing in the Chapman Kolmogorov equation (starting point of the PI). Spectral counterpa…

research product

La Rocca di Cefalù: modello geomeccanico e condizioni di rischio per la cittadina normanna

La cittadina di Cefalù, ubicata a circa 70 km da Palermo, è una delle perle del Mediterraneo, per la bellezza dei luoghi, dominati dalla Rocca, imponente rupe carbonatica alta circa 250 m s.l.m., e per i beni architettonici (Figg. 1 e 2). Fondata dai greci con il nome di Κεφαλοίδιον tra il XIV e il XIII a.C., conserva sulla Rocca il palazzo santuario ciclopico-megalitico, noto come Tempio di Diana. Sul ciglio della Rocca e per il suo intero sviluppo si snoda la cinta muraria di tipo megalitico risalente alla fine del V secolo a.C. (periodo pre-ellenico), in parte ricostruita nel periodo bizantino (VII÷IX secolo d.C.). Nel periodo normanno (secolo XII d.C.) furono costruiti i principali monu…

research product

Stochastic ship roll motion via path integral method

ABSTRACTThe response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple …

research product

UN CONTRIBUTO ALLA RIFLESSIONE TEORICA SULL’ARTE ATTRAVERSO LE CARTE DELLA REAL SEGRETERIA LUOGOTENENZIALE. LA POLITICA CULTURALE DEL REGIO MUSEO BORBONICO DI PALERMO. (1818-1824)

research product

Error in the finite difference based probabilistic dynamic analysis: analytical evaluation

research product

Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method

In this paper the response in terms of probability density function of nonlinear systems under combined normal and Poisson white noise is considered. The problem is handled via a Path Integral Solution (PIS) that may be considered as a step-by-step solution technique in terms of probability density function. A nonlinear system under normal white noise, Poissonian white noise and under the superposition of normal and Poisson white noise is performed through PIS. The spectral counterpart of the PIS, ruling the evolution of the characteristic functions is also derived. It is shown that at the limit when the time step becomes an infinitesimal quantity an equation ruling the evolution of the pro…

research product

Ship Roll Motion under Stochastic Agencies Using Path Integral Method

The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamica…

research product

A novel exact representation of stationary colored Gaussian processes (fractional differential approach)

A novel representation of functions, called generalized Taylor form, is applied to the filtering of white noise processes. It is shown that every Gaussian colored noise can be expressed as the output of a set of linear fractional stochastic differential equations whose solution is a weighted sum of fractional Brownian motions. The exact form of the weighting coefficients is given and it is shown that it is related to the fractional moments of the target spectral density of the colored noise.

research product

Non-Stationary Random vibrations of uncertain structures by VDM

research product

Truly no-mesh method for beam torsion solution

research product

Fractional Derivatives in Interval Analysis

In this paper, interval fractional derivatives are presented. We consider uncertainty in both the order and the argument of the fractional operator. The approach proposed takes advantage of the property of Fourier and Laplace transforms with respect to the translation operator, in order to first define integral transform of interval functions. Subsequently, the main interval fractional integrals and derivatives, such as the Riemann–Liouville, Caputo, and Riesz, are defined based on their properties with respect to integral transforms. Moreover, uncertain-but-bounded linear fractional dynamical systems, relevant in modeling fractional viscoelasticity, excited by zero-mean stationary Gaussian…

research product

De Saint-Venant flexure-torsion problem handled by Line Element-less Method (LEM)

In this paper, the De Saint-Venant flexure-torsion problem is developed via a technique by means of a novel complex potential function analytic in all the domain whose real and imaginary parts are related to the shear stresses. The latter feature makes the complex analysis enforceable for the shear problem. Taking full advantage of the double-ended Laurent series involving harmonic polynomials, a novel element-free weak form procedure, labelled Line Element-less Method (LEM), is introduced, imposing that the square of the net flux across the border is minimized with respect to expansion coefficients. Numerical implementation of the LEM results in systems of linear algebraic equations involv…

research product

Non-linear Systems Under Poisson White Noise Handled by Path Integral Solution

An extension of the path integral to non-linear systems driven by a Poissonian white noise process is presented. It is shown that at the limit when the time increment becomes infinitesimal the Kolmogorov— Feller equation is fully restored. Applications to linear and non-linear systems with different distribution of the Dirac's deltas occurrences are performed and results are compared with analytical solutions (when available) and Monte Carlo simulation.

research product