0000000000064111

AUTHOR

Diana Bajare

Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

The usage of phase change materials (PCMs) is a way to store excess energy pro- duced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase signi cantly. It is therefore of great interest if the ther- mal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show tha…

research product

Assessment of Plant Origin By-Products as Lightweight Aggregates for Bio-Composite Bounded by Starch Binder

Thermal insulation bio-composites made of plant origin by-products as bio-aggregates are one of the ways to decrease the impact of the building and construction sector on CO2 emissions. In this study, three bio-aggregates were analysed for their potential use in the production of bio-composites with potato starch binder. Technologically important properties, such as particle size, shape and compacted bulk density, as well as properties of the resulting bio-composites were identified. The main characteristics of the aggregates are relatively similar: density of 80–100 kg/m3, thermal conductivity of 0.042–0.045 W/m∙K, specific heat capacity of 1240–1330 J/g∙K, ki…

research product

Experimental testing of phase change materials in a warm-summer humid continental climate

Abstract The construction industry (and buildings) is one of the largest energy consuming and CO2 emitting sectors in the world. To counter this, more lightweight structures are being used and energy saving applications are being developed. Phase change materials (PCM) are materials that can be considered to tackle these new challenges. It has been proven that PCMs can be passively used to improve the thermal mass of lightweight structures, which improves thermal comfort and reduces peak cooling and heating loads and therefore provides energy savings. To use these materials in an active way, they should be used together with ventilation, cooling or heating equipment, and collectors to accum…

research product

In-situ measurements of hemp-lime insulation materials for energy efficiency improvement

Abstract Reduction of the CO2 emissions in the atmosphere is one of the goals set forth by the European Union, hence various directives have been adopted, such as the European directive 2012/27/EU on energy efficiency, i.e. ensuring from 2019 the construction of the near-zero energy buildings (nZEB). The construction segment plays a very important part in solving the current global problem of the greenhouse gas emissions and related processes of global warming, because in certain countries (i.e. in Latvia) it represents more than a half of the total energy consumption. Hence the necessity to elaborate means on how to boost the energy efficiency of the buildings meanwhile not rising pressure…

research product