0000000000064585

AUTHOR

S. López-moreno

showing 13 related works from this author

Precise Characterization of the Rich Structural Landscape Induced by Pressure in Multifunctional FeVO4

2020

We have studied the high-pressure behavior of FeVO4 by means of single-crystal X-ray diffraction (XRD) and density functional theory (DFT) calculations. We have found that the structural sequence o...

Diffraction010405 organic chemistryChemistryPhysics::Optics010402 general chemistry01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCondensed Matter::Materials ScienceCrystallographyDensity functional theoryPhysics::Chemical PhysicsPhysical and Theoretical ChemistrySequence (medicine)Inorganic Chemistry
researchProduct

Monazite-type SrCrO4 under compression

2016

We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low-pressure and high-pressure phases as well as the frequencies an…

Phase transitionMaterials scienceBand gapPhononFOS: Physical sciences02 engineering and technologyX-RAY-DIFFRACTION; PRESSURE RAMAN-SCATTERING; PHOTOCATALYTIC PROPERTIES01 natural sciencesPhysics - GeophysicsTetragonal crystal systemsymbols.namesakeX-RAY-DIFFRACTIONAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesPRESSURE RAMAN-SCATTERING010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyGeophysics (physics.geo-ph)PHOTOCATALYTIC PROPERTIESsymbols0210 nano-technologyRaman spectroscopyMonoclinic crystal systemPhysical Review B
researchProduct

High-pressure structural behaviour of HoVO4: combined XRD experiments and ab initio calculations.

2014

We report a high-pressure experimental and theoretical investigation of the structural properties of zircon-type HoVO4. Angle-dispersive x-ray diffraction measurements were carried out under quasi-hydrostatic and partial non-hydrostatic conditions up to 28 and 23.7 GPa, respectively. In the first case, an irreversible phase transition is found at 8.2 GPa. In the second case, the onset of the transition is detected at 4.5 GPa, a second (reversible) transition is found at 20.4 GPa, and a partial decomposition of HoVO4 was observed. The structures of the different phases have been assigned and their equations of state (EOS) determined. Experimental results have also been compared to theoretica…

DiffractionCondensed Matter - Materials SciencePhase transitionMaterials scienceConsistency (statistics)Ab initio quantum chemistry methodsHigh pressureMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermodynamicsGeneral Materials SciencePartial decompositionCondensed Matter PhysicsJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

First-principles study of elastic and thermal properties of scheelite-type molybdates and tungstates

2020

Abstract First-principles calculations are carried out to study the physical properties of scheelite-type AMoO4 molybdates and AWO4 tungstates (A = Ca, Sr, Ba, and Pb). We consider two flavors for the exchange-correlation functional, the local-density approximation (LDA) and the generalized gradient approximation (GGA). The second-order elastic constants were determined, and we found that c11 is larger than c33 for the eight investigated compounds. This fact is consistent with the well-known anisotropic compressibility of scheelite-type molybdates and tungstates. The calculated elastic constants are used to determine macroscopic properties which are relevant for applications, such as the bu…

Materials scienceThermodynamicsYoung's modulus02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesPoisson's ratio0104 chemical sciencessymbols.namesakechemistry.chemical_compoundThermal conductivitychemistryMechanics of MaterialsScheeliteVickers hardness testMaterials ChemistrysymbolsCompressibilityGeneral Materials Science0210 nano-technologyAnisotropyDebye modelMaterials Today Communications
researchProduct

Phase transition systematics in BiVO4 by means of high-pressure–high-temperature Raman experiments

2018

We report here high-pressure--high-temperature Raman experiments performed on ${\text{BiVO}}_{4}$. We characterized the fergusonite and scheelite phases (powder and single crystal samples) and the zircon polymorph (nanopowder). The experimental results are supported by ab initio calculations, which, in addition, provide the vibrational patterns. The temperature and pressure behavior of the fergusonite lattice modes reflects the distortions associated with the ferroelastic instability. The linear coefficients of the zircon phase are in sharp contrast to the behavior observed in the fergusonite phase. The boundary of the fergusonite-to-scheelite second-order phase transition is given by ${T}_…

Phase transitionMaterials scienceScatteringAnharmonicity02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyFergusonite01 natural sciences0104 chemical sciencesCrystallographysymbols.namesakeAb initio quantum chemistry methodsLattice (order)symbols0210 nano-technologyRaman spectroscopySingle crystalPhysical Review B
researchProduct

High-pressure phase transitions and compressibility of wolframite-type tungstates

2010

This paper reports an investigation on the phase diagram and compressibility of wolframite-type tungstates by means of x-ray powder diffraction and absorption in a diamond-anvil cell and ab initio calculations. The diffraction experiments show that monoclinic wolframite-type MgWO4 suffers at least two phase transitions, the first one being to a triclinic polymorph with a structure similar to that of CuWO4 and FeMoO4-II. The onset of each transition is detected at 17.1 and 31 GPa. In ZnWO4 the onset of the monoclinic-triclinic transition has been also found at 15.1 GPa. These findings are supported by density-functional theory calculations, which predict the occurrence of additional transiti…

DiffractionCondensed Matter - Materials SciencePhase transitionMaterials scienceGeneral Physics and AstronomyThermodynamicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesTriclinic crystal systemCondensed Matter - Other Condensed MatterAb initio quantum chemistry methodsPhase (matter)CompressibilityPowder diffractionPhase diagramOther Condensed Matter (cond-mat.other)
researchProduct

Lattice dynamics of ZnAl2O4 and ZnGa2O4 under high pressure

2010

In this work we present a ¿rst-principles density functional study of the vibrational properties of ZnAl2 O4 and ZnGa2 O4 as function of hydrostatic pressure. Based on our previous structural characterization of these two compounds under pressure, herewith, we report the pressure dependence on both systems of the vibrational modes for the cubic spinel structure, for the CaFe2 O4-type structure (Pnma) in ZnAl2 O4 and for marokite (Pbcm) ZnGa2 O4. Additionally we report a second order phase transition in ZnGa2 O4 from the marokite towards the CaTi2 O4-type structure (Cmcm), for which we also calculate the pressure dependence of the vibrational modes at the ¿ point. Our calculations are comple…

Phase transitionWork (thermodynamics)Materials scienceCondensed matter physicsPhononHydrostatic pressureSpinelAb initioGeneral Physics and Astronomyengineering.materialMolecular physicssymbols.namesakeFISICA APLICADAMolecular vibrationengineeringsymbolsRaman scatteringAnnalen der Physik
researchProduct

The electronic structure of zircon-type orthovanadates: Effects of high-pressure and cation substitution

2012

The electronic structure of four ternary-metal oxides containing isolated vanadate ions is studied. Zircon-type YVO4, YbVO4, LuVO4, and NdVO4 are investigated by high-pressure optical-absorption measurements up to 20 GPa. First-principles calculations based on density-functional theory were also performed to analyze the electronic band structure as a function of pressure. The electronic structure near the Fermi level originates largely from molecular orbitals of the vanadate ion, but cation substitution influence these electronic states. The studied ortovanadates, with the exception of NdVO4, undergo a zircon-scheelite structural phase transition that causes a collapse of the band-gap energ…

Materials scienceINITIO MOLECULAR-DYNAMICSGeneral Physics and AstronomyBASIS-SETFOS: Physical sciencesElectronic structureAUGMENTED-WAVE METHODPhysics::GeophysicsYVO4symbols.namesakeCondensed Matter::Materials ScienceRAMANPhase (matter)Physics - Chemical PhysicsVanadateMolecular orbitalElectronic band structureBasis setAB-INITIOChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceTOTAL-ENERGY CALCULATIONSFermi levelMaterials Science (cond-mat.mtrl-sci)INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; AB-INITIO; OPTICAL-ABSORPTION; BASIS-SET; TRANSITION; RAMAN; YVO4; CRYSTALSCRYSTALSCrystallographyOPTICAL-ABSORPTIONsymbolsDensity functional theoryTRANSITION
researchProduct

Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4

2012

The electronic band-structure and band-gap dependence on the $d$ character of ${A}^{2+}$ cation in $A$WO${}_{4}$ wolframite-type oxides is investigated for different compounds ($A$ $=$ Mg, Zn, Cd, and Mn) by means of optical-absorption spectroscopy and first-principles density-functional calculations. High pressure is used to tune their properties up to 10 GPa by changing the bonding distances establishing electronic to structural correlations. The effect of unfilled $d$ levels is found to produce changes in the nature of the band gap as well as its pressure dependence without structural changes. Thus, whereas Mg, Zn, and Cd, with empty or filled $d$ electron shells, give rise to direct and…

Materials scienceBand gapbusiness.industryAnalytical chemistryElectron shellCondensed Matter PhysicsPressure coefficientElectronic Optical and Magnetic MaterialsSemiconductorDirect and indirect band gapsMultiferroicsAbsorption (logic)SpectroscopybusinessPhysical Review B
researchProduct

High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds

2011

Research was financed by the Spanish Ministerio de Educacion y Ciencia (MEC) under Grants No. MAT2010-21270-C04-01/02/04, and No. CSD-2007-00045. J. R.-F. thanks the MEC for support through the FPI program, as well as the SPP1236 central facility in Frankfurt for its use. F. J. M. acknowledges support from Vicerrectorado de Investigacion y Desarrollo de la Universitat Politecnica de Valencia (UPV) (Grant No. UPV2010-0096). A. M. and P. R.-H. acknowledge the supercomputer time provided by the Red Espanola de Supercomputacion. A. F. appreciates support from the German Research Foundation (Grant No. FR2491/2-1).

Lattice dynamicsPhysicsHigh pressureCondensed Matter PhysicsHumanitiesElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Zircon to monazite phase transition in CeVO4: X-ray diffraction and Raman-scattering measurements

2011

X-ray diffraction and Raman-scattering measurements on cerium vanadate have been performed up to 12 and 16 GPa, respectively. Experiments reveal at 5.3 GPa the onset of a pressure-induced irreversible phase transition from the zircon to the monazite structure. Beyond this pressure, diffraction peaks and Raman-active modes of the monazite phase are measured. The zircon-to-monazite transition in CeVO4 is distinctive among the other rare-earth orthovanadates. We also observed softening of external translational T(Eg )a nd internalν2(B2g) bending modes. We attribute it to mechanical instabilities of zircon phase against the pressure-induced distortion. We additionally report lattice-dynamical a…

DiffractionPhase transitionMaterials scienceAnalytical chemistrychemistry.chemical_elementCondensed Matter PhysicsPhysics::GeophysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeCeriumchemistryMonazitePhase (matter)X-ray crystallographysymbolsRaman scatteringZirconPhysical Review B
researchProduct

Stability of FeVO4 under Pressure: An X-ray Diffraction and First-Principles Study

2018

The high-pressure behavior of the crystalline structure FeVO4 has been studied by means of X-ray diffraction using a diamond-anvil cell and first-principles calculations. The experiments were carried out up to a pressure of 12.3 GPa, until now the highest pressure reached to study an FeVO4 compound. High-pressure X-ray diffraction measurements show that the triclinic P1 (FeVO4-I) phase remains stable up to ≈3 GPa; then a first-order phase transition to a new monoclinic polymorph of FeVO4 (FeVO4-II′) with space group C2/m is observed, having an α-MnMoO4-type structure. A second first-order phase transition is observed around 5 GPa toward the monoclinic (P2/c) wolframite-type FeVO4-IV structu…

DiffractionPhase transitionChemistry02 engineering and technologyCrystal structureTriclinic crystal system010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesStability (probability)0104 chemical sciencesInorganic ChemistryCrystallographyPhase (matter)X-ray crystallographyPhysical and Theoretical Chemistry0210 nano-technologyMonoclinic crystal systemInorganic Chemistry
researchProduct

High-pressure characterization of multifunctional CrVO4

2020

[EN] The structural stability and physical properties of CrVO(4)under compression were studied by x-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, andab initiocalculations up to 10 GPa. High-pressure x-ray diffraction and Raman measurements show that CrVO(4)undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is proposed to be isomorphic to the wolframite structure. Such a phase transition (CrVO4-type -> wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure …

-typeoptical absorptionCondensed Matter - Materials Sciencehigh-pressureCrVOOther Physics TopicsHigh-pressureOptical absorption4Settore ING-IND/22 - Scienza e Tecnologia dei MaterialiMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesAnnan fysikCrVO4-typeX-ray diffractionx-ray diffractionRamanspectroscopyphase transitionFISICA APLICADARaman spectroscopyCrVO; 4; -type; high-pressure; optical absorption; phase transition; Raman spectroscopy; X-ray diffractionPhase transition
researchProduct