0000000000064615

AUTHOR

Franz R. Aussenegg

Near-field optical response of a two-dimensional grating of gold nanoparticles

Laboratoire de Physique, Optique Submicronique, Universite´de Bourgogne, Boite Postale 47870, F-21078 Dijon, France~Received 1 August 2000; published 4 April 2001!This article reports on the near-field optical response of a small square grating of gold nanoparticles tailoredby electron-beam lithography. The investigation of the grating is aimed at a deepened understanding ofelectromagnetic interaction among particles due to scattered light fields. Therefore, a photon scanning tunnel-ing microscope is applied to acquire near-field optical images. Two different incident wavelengths are used tocharacterize the intensity and the spatial localization of the electromagnetic near field both in and out…

research product

Surface plasmon interference fringes in back-reflection

We report the experimental observation of surface plasmon polariton (SPP) interference fringes with near-unity visibility and half-wavelength periodicity obtained in back reflection on a Bragg mirror. The presented method based on leakage radiation microscopy (LRM) represents an alternative solution to optical near-field analysis and opens new ways for the quantitative analysis of SPP fringes. With LRM we investigate various SPP interference patterns and analyze the high reflectivity of Bragg mirror in comparison with theoretical models.

research product

Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles

We report on the experimental observation of near-field optical effects close to Au nanoparticles using a photon scanning tunneling microscope (PSTM). Constant height operation of the PSTM allowed an unprecedented direct comparison with theoretical computations of the distribution of the optical near-field intensity. An unexpected squeezing of the optical near field due to plasmon coupling was observed above a chain of Au nanoparticles.

research product

Optical Near-Field Properties of Lithographically Designed Metallic Nanoparticles

ABSTRACTWe report on the experimental observation of localized surface plasmons sustained by small metallic particles using a photon scanning tunneling microscope (PSTM). The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. The constant height operation of the PSTM allowed a direct comparison with theoretical computations of the distribution of the optical near-field intensity. Plasmon coupling above a chain of Au particles and electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire are demonstrated. Our experimental results appear to be in good agreement with theoretical computations based on the Green's Dyadic Techniqu…

research product

Direct observation of localized surface plasmon coupling

We report on the direct observation of localized surface plasmon coupling using a photon scanning tunneling microscope. The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. Electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire, which is not directly excited by the incident light is observed. Our experimental results appear to be in good agreement with theoretical computations based on Green's dyadic technique.

research product

Light field propagation by metal micro- and nanostructures

The ability to sustain plasmon oscillations gives rise to unique properties of metal nanostructures, which can be exploited for the controlled manipulation of light fields on the nanoscale. In this context we investigate electromagnetic coupling effects within lithographically produced ensembles of gold nanoparticles with a photon scanning tunnelling microscope. To provide an interface between these nano-optical devices and classical far-field optics, we investigate surface plasmon propagation on microstructured metal thin films.

research product