0000000000066486

AUTHOR

Alexey A. Petrov

showing 18 related works from this author

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

First observation of the doubly charmed baryon decay Ξcc++→Ξc+π+

2018

The doubly charmed baryon decay Ξcc++→Ξc+π+ is observed for the first time, with a statistical significance of 5.9σ, confirming a recent observation of the baryon in the Λc+K−π+π+ final state. The data sample used corresponds to an integrated luminosity of 1.7 fb−1, collected by the LHCb experiment in pp collisions at a center-of-mass energy of 13 TeV. The Ξcc++ mass is measured to be 3620.6±1.5(stat)±0.4(syst)±0.3(Ξc+) MeV/c2 and is consistent with the previous result. The ratio of branching fractions between the decay modes is measured to be [B(Ξcc++→Ξc+π+)×B(Ξc+→pK−π+)]/[B(Ξcc++→Λc+K−π+π+)×B(Λc+→pK−π+)]=0.035±0.009(stat)±0.003(syst).

Particles and fieldGeneral Physics and Astronomy01 natural sciencesNONuclear physicsPhysics and Astronomy (all)Condensed Matter::Superconductivity0103 physical sciencesPhysicLHCb - Abteilung HintonSDG 7 - Affordable and Clean Energy010306 general physicsPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyParticle physicsHEPBaryonLHCbCharmed baryonHadron colliderHigh Energy Physics::ExperimentB physics Branching fraction CP violation Hadron-Hadron scattering (experiments)LHCFísica de partículesExperiments
researchProduct

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

Updated determination of D0–D¯0 mixing and CP violation parameters with D0→K+π− decays

2018

We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D0→K+π- to D0→K-π+ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0  fb-1 recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be x′2=(3.9±2.7)×10-5, y′=(5.28±0.52)×10-3, and RD=(3.454±0.031)×10-3. Without this assumption, the measurement is performed separately for D0 and D¯0 mesons, yielding a direct CP-violating asymmetry AD=(-0.1±9.1)×10-3, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results incl…

PhysicsParticle physicsLuminosity (scattering theory)Meson010308 nuclear & particles physicsmedia_common.quotation_subject01 natural sciencesAsymmetrySymmetry (physics)0103 physical sciencesCP violationCharm (quantum number)010306 general physicsMixing (physics)Bar (unit)media_commonPhysical Review D
researchProduct

Observation of charmless baryonic decays B(s)0→pp¯h+h′−

2017

Decays of B0 and Bs0 mesons to the charmless baryonic final states pp¯h+h′-, where h and h′ each denote a kaon or a pion, are searched for using the LHCb detector. The analysis is based on a sample of proton-proton collision data collected at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb-1. Four-body charmless baryonic Bs0 decays are observed for the first time. The decays Bs0→pp¯K+K-, Bs0→pp¯K±π∓, B0→pp¯K±π∓ and B0→pp¯π+π- are observed with a significance greater than 5 standard deviations; evidence at 4.1 standard deviations is found for the B0→pp¯K+K- decay and an upper limit is set on the branching fraction for Bs0→pp¯π+π-. Branching fraction…

Nuclear physicsBaryonPhysicsPionMeson010308 nuclear & particles physicsBranching fraction0103 physical sciences010306 general physics01 natural sciencesPhysical Review D
researchProduct

Search for Structure in theBs0π±Invariant Mass Spectrum

2016

The $B_s^0\pi^\pm$ invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to $3$ fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 7$ and $8$ TeV. No significant excess is found, and upper limits are set on the production rate of the claimed $X(5568)$ state. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the $B_s^0\pi^\pm$ final state.

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySpectrum (functional analysis)General Physics and AstronomyOrder (ring theory)Function (mathematics)State (functional analysis)01 natural sciencesNuclear physicsDistribution (mathematics)0103 physical sciencesHigh Energy Physics::ExperimentInvariant massExotic meson010306 general physicsPhysical Review Letters
researchProduct

Evidence for Exotic Hadron Contributions toΛb0→J/ψpπ−Decays

2016

A full amplitude analysis of $\Lambda_b^0 \to J/\psi p \pi^-$ decays is performed with a data sample acquired with the LHCb detector from 7 and 8 TeV $pp$ collisions, corresponding to an integrated luminosity of 3 fb$^{-1}$. A significantly better description of the data is achieved when, in addition to the previously observed nucleon excitations $N\to p\pi^-$, either the $P_c(4380)^+$ and $P_c(4450)^+\to J/\psi p$ states, previously observed in $\Lambda_b^0 \to J/\psi p K^-$ decays, or the $Z_c(4200)^-\to J/\psi \pi^-$ state, previously reported in $B^0 \to J/\psi K^+ \pi^-$ decays, or all three, are included in the amplitude models. The data support a model containing all three exotic sta…

PhysicsParticle physics010308 nuclear & particles physicsPartial wave analysisQuark modelGeneral Physics and AstronomyExotic hadronLambda01 natural sciencesLuminosityNuclear physicsAmplitude0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)010306 general physicsNucleonPhysical Review Letters
researchProduct

Search for weakly decaying b -flavored pentaquarks

2018

Investigations of the existence of pentaquark states containing a single $b$ (anti)quark decaying weakly into four specific final states J/$\psi K^+\pi^- p$, J/$\psi K^- \pi^- p$, J/$\psi K^- \pi^+ p$, and $J/\psi \phi (1020) p$ are reported. The data sample corresponds to an integrated luminosity of 3.0/fb in 7 and 8 TeV pp collisions acquired with the LHCb detector. Signals are not observed and upper limits are set on the product of the production cross section times branching fraction with respect to that of the $\Lambda_b$.

baryon: exoticPhysics and Astronomy (miscellaneous)7000 GeV-cms8000 GeV-cms01 natural sciencesPhysics Particles & FieldsSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentLuminosityHigh Energy Physics - Experiment (hep-ex)Hadron-Hadron scattering (experiments)scattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]exotic [baryon]LHCb - Abteilung HintonpentaquarkPhysics8000 GeV-cmsPhysicsParticle physicsPentaquark3. Good healthchannel cross section: branching ratio: upper limitExotic baryonpentaquark --> J/psi(3100) K- pi+ pBranching fraction Hadron-Hadron scattering (experiments) QCDpentaquark --> J/psi(3100) K- pi- pCERN LHC Coll7000 GeV-cmsPhysical Sciencespentaquark --> J/psi(3100) Phi(1020) pBranching fractionLHCcolliding beams [p p]Particle Physics - ExperimentQuarkParticle physicsp p: scatteringFOS: Physical sciencesAstronomy & AstrophysicsHadronsNOmultiquark[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)Science & Technologybranching ratio: upper limit [channel cross section]hep-ex010308 nuclear & particles physicsBranching fractionpentaquark --> J/psi(3100) K+ pi- pParticles and FieldGran Col·lisionador d'HadronsBottom quarkQCDLHC-BHEPLHCbHigh Energy Physics::ExperimentFísica de partículesExperimentsp p: colliding beamsexperimental resultsPhysical Review D
researchProduct

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Measurement of the branching fraction of the decay Bs0→KS0KS0

2020

A measurement of the branching fraction of the decay Bs0→KS0KS0 is performed using proton-proton collision data corresponding to an integrated luminosity of 5 fb-1 collected by the LHCb experiment between 2011 and 2016. The branching fraction is determined to be B(Bs0→KS0KS0)=[8.3±1.6(stat)±0.9(syst)±0.8(norm)±0.3(fs/fd)]×10-6, where the first uncertainty is statistical, the second is systematic, and the third and fourth are due to uncertainties on the branching fraction of the normalization mode B0→φKS0 and the ratio of hadronization fractions fs/fd. This is the most precise measurement of this branching fraction to date. Furthermore, a measurement of the branching fraction of the decay B0…

PhysicsNuclear physicsNormalization (statistics)010308 nuclear & particles physicsBranching fraction0103 physical sciences010306 general physics01 natural sciencesHadronizationPhysical Review D
researchProduct

Measurement of the c0 Baryon Lifetime

2018

We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …

Particles and fieldGeneral PhysicsMesonGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyOmega09 EngineeringNOLuminosityHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesPhysicHeavy baryonTOOLSDG 7 - Affordable and Clean EnergyLHCb - Abteilung Hinton010306 general physicsINCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); RULE; TOOL01 Mathematical SciencesQuantum chromodynamicsPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy02 Physical Sciences010308 nuclear & particles physicsQuark modelParticle physicsState (functional analysis)HEPDISCARDING 1/N(C)BaryonLHCbHadron colliderHigh Energy Physics::ExperimentINCLUSIVE WEAK DECAYSLHCAtomic physicsFísica de partículesExperimentsRULECharm physics Oscillation Flavor physics Hadron-Hadron scattering
researchProduct

Amplitude analysis ofB−→D+π−π−decays

2016

The Dalitz plot analysis technique is used to study the resonant substructures of $B^{-} \to D^{+} \pi^{-} \pi^{-}$ decays in a data sample corresponding to 3.0 ${\rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high $D^{+}\pi^{-}$ mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the $D^{+}\pi^{-}$ S-wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{*0}$ states, and components corresponding to the $D^{*}_{2}(2460)^{0}$, $D^{*}_{1}(2680)^{0}$, $D^{*}_…

PhysicsParticle physicsFormalism (philosophy of mathematics)AmplitudeSpinsMeson010308 nuclear & particles physicsScattering0103 physical sciencesDalitz plot010306 general physics01 natural sciencesPhysical Review D
researchProduct

The Belle II Physics Book

2019

cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,…

B: semileptonic decayPhysics beyond the Standard ModelHadronelectroproduction [charmonium]General Physics and AstronomyComputingMilieux_LEGALASPECTSOFCOMPUTINGB: radiative decayannihilation [electron positron]7. Clean energy01 natural sciencescharmonium: electroproductionB physicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Z'law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)dark sector searchesPhysicslifetimeradiative decay [B]doublet [Higgs particle]new physicsPhysicsHigh Energy Physics - Lattice (hep-lat)ddc:530Electroweak interactionlepton: flavor: violationhep-phParticle Physics - LatticeMonte Carlo [numerical calculations]electron positron: colliding beamsQuarkoniumasymmetry: CPquarkonium physicselectroweak interaction: penguinHigh Energy Physics - PhenomenologyImproved performancecolliding beams [electron positron]CP violationinterfaceelectroproduction [quarkonium]electroweak precision measurementsnumerical calculations: Monte CarlophysicsParticle Physics - ExperimentperformanceParticle physicsflavor: violation [lepton]reviewhep-latFOS: Physical sciencesBELLEHigh Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Lattice; High Energy Physics - Phenomenologyelectron positron: annihilationquarkonium: electroproductionCP [asymmetry]E(6)Higgs particle: doubletmixing [D0 anti-D0]Theoretical physicsCP: violation: time dependenceHigh Energy Physics - LatticeKEK-B0103 physical sciencesquantum chromodynamicshidden sector [photon]ddc:530composite010306 general physicsColliderParticle Physics - PhenomenologyHigh Energy Physics - Experiment; High Energy Physics - Lattice; High Energy Physics - Phenomenologyphoton: hidden sectorhep-ex010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]C50 Other topics in experimental particle physicsviolation: time dependence [CP]D0 anti-D0: mixingB2TiP530 PhysikExperimental physicsB: leptonic decayCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]penguin [electroweak interaction]leptonic decay [B]semileptonic decay [B]charmparticle identificationexperimental results
researchProduct

The experimental facility for the Search for Hidden Particles at the CERN SPS

2019

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

TechnologyPhysics - Instrumentation and Detectorsbackground: inducedlarge detector systems for particle and astroparticle physicsSPSbeam transportElectron7. Clean energy01 natural sciences09 Engineeringdark matter detectors (wimps axions etc.)High Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionNeutrino detectorHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineRecoillawetc.)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detInstruments & InstrumentationInstrumentationbackground: suppressionMathematical Physicsnucleus: recoilPhysicsRange (particle radiation)tau neutrino02 Physical SciencesLarge Hadron Colliderbeam lossInstrumentation and Detectors (physics.ins-det)p: beamNuclear & Particles Physicsvacuum systemparticle: interactionDark Matter detectors (WIMPbeam opticsNeutrino detectorp: beam dumpPhysics - Instrumentation and Detectorproposed experimentParticle Physics - Experimentzirconium: admixtureFOS: Physical sciencesAccelerator Physics and Instrumentationbeam: ejectionp: targetHidden SectorNuclear physicsKKKK: SHiP03 medical and health sciences0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Beam dumpnumerical calculationsmuon: shieldingdetector: designactivity reportDark Matter detectors (WIMPsScience & Technologyhep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsbeam-dump facilityAcceleratorfysik och instrumenteringCERN SPSHidden sectoraxionaxions etc.)Large detector systems for particle and astroparticle physicmolybdenum: alloyPhysics::Accelerator Physicstarget: designtitanium: admixtureBeam (structure)neutrino detectors
researchProduct

B0−B¯0Mixing beyond Factorization in QCD Sum Rules

2003

We present a calculation of the B°-B° mixing matrix element in the framework of QCD sum rules for three-point functions. We compute α s corrections to a three-point function at the three-loop level in QCD perturbation theory, which allows one to extract the matrix element with next-to-leading order (NLO) accuracy. This calculation is imperative for a consistent evaluation of experimentally measured mixing parameters since the coefficient functions of the effective Hamiltonian for B 0 -B 0 mixing are known at NLO. We find that radiative corrections violate factorization at NLO; this violation is under full control and amounts to 10%. The resulting value of the B parameter is found to be B B …

Quantum chromodynamicsPhysicsParticle physicssymbols.namesakeQCD sum rulesFactorizationRadiative transfersymbolsGeneral Physics and AstronomyMatrix elementHamiltonian (quantum mechanics)Physical Review Letters
researchProduct

Future Physics Programme of BESIII

2020

There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like $XYZ$ states at BESIII and $B$ factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related $X(1835)$ meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation. This survey will help in the optimization of the data-taking pla…

Nuclear and High Energy PhysicsParticle physicsX(1835)charmed mesonMesoncharmoniumNuclear TheoryFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNOSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron physicsHadron spectroscopySubatomic Physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Charm (quantum number)charmed baryontau010306 general physicsNuclear ExperimentInstrumentationanti-p pactivity reportPhysicsthreshold: enhancementLuminosity (scattering theory)BES010308 nuclear & particles physicshadron spectroscopyHigh Energy Physics::PhenomenologyThe RenaissanceAstronomy and AstrophysicsBeijing Stor: upgradeBaryonHigh Energy Physics - PhenomenologyUpgradeexperimental equipment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentluminosity: high
researchProduct

Measurements of charm mixing and CP violation using D0→K±π∓ decays

2017

Measurements of charm mixing and CP violation parameters from the decay-time-dependent ratio of D0→K+π− to D0→K−π+ decay rates and the charge-conjugate ratio are reported. The analysis uses B¯¯¯¯→D∗+μ−X, and charge-conjugate decays, where D∗+→D0π+, and D0→K∓π±. The pp collision data are recorded by the LHCb experiment at center-of-mass energies s√ = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb−1. The data are analyzed under three hypotheses: (i) mixing assuming CP symmetry, (ii) mixing assuming no direct CP violation in the Cabibbo-favored or doubly Cabibbo-suppressed decay amplitudes, and (iii) mixing allowing either direct CP violation and/or CP violation in the superpos…

PhysicsParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDisjoint sets01 natural sciencesNuclear physicsAmplitude0103 physical sciencesCP violationHigh Energy Physics::ExperimentCharm (quantum number)010306 general physicsMixing (physics)Eigenvalues and eigenvectorsPhysical Review D
researchProduct