0000000000066743
AUTHOR
Heli Matilainen
RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells.
Baculovirus vectors have been shown to enter a variety of mammalian cell lines and gene transfer with wild-type baculovirus (WT) has been demonstrated both in vitro and in vivo. Different protein motifs have been displayed on the viral surface to serve as ligands for cell-specific receptor molecules. We have generated recombinant baculovirus vectors displaying an RGD-motif, recognized by alphaV integrin, on the viral surface. The RGD motifs within the C-terminus of coxsackie virus A9 and human parechovirus 1 VP1 proteins were fused to the N-terminus of the major envelope glycoprotein, gp64, of Autographa californica multiple nucleopolyhedrovirus. The recombinant RGD-presenting viruses bound…
Baculovirus entry into human hepatoma cells.
ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a prototype member of the Baculoviridae family, has gained increasing interest as a potential vector candidate for mammalian gene delivery applications. AcMNPV is known to enter both dividing and nondividing mammalian cell lines in vitro, but the mode and kinetics of entry as well as the intracellular transport of the virus in mammalian cells is poorly understood. The general objective of this study was to characterize the entry steps of AcMNPV- and green fluorescent protein-displaying recombinant baculoviruses in human hepatoma cells. The viruses were found to bind and transduce the cell line efficiently, and electron …
Functional display of an alpha2 integrin-specific motif (RKK) on the surface of baculovirus particles.
The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not st…
Internalization of Echovirus 1 in Caveolae
ABSTRACT Echovirus 1 (EV1) is a human pathogen which belongs to the Picornaviridae family of RNA viruses. We have analyzed the early events of infection after EV1 binding to its receptor α2β1 integrin and elucidated the route by which EV1 gains access to the host cell. EV1 binding onto the cell surface and subsequent entry resulted in conformational changes of the viral capsid as demonstrated by sucrose gradient sedimentation analysis. After 15 min to 2 h postinfection (p.i.) EV1 capsid proteins were seen in vesicular structures that were negative for markers of the clathrin-dependent endocytic pathway. In contrast, immunofluorescence confocal microscopy showed that EV1, α2β1 integrin, and …
Development of baculovirus display strategies towards targeting to tumor vasculature
Matilaisen väitöstutkimuksen tavoitteena oli kehittää bakulovirusta käytettäväksi geeniterapiaan syövän hoitoon. Bakulovirus on hyönteisvirus ja siten turvallisempi vaihtoehto kokeellisessa geeniterapiassa tällä hetkellä käytettäville patogeenisille viruksille tai niiden muunnelmille.Matilainen tutki myös virusten ja käytettyjen kohdennuspeptidien sisääntulomekanismeja ihmisen syöpäsoluihin. Tutkimuksessa löydettiin mahdollisesti bakuloviruksen uusi vaihtoehtoinen sisääntuloreitti. Virusten ja kohdennusmolekyylien reseptoreiden sisääntulomekanismien tutkimus ja tunteminen on edellytyksenä onnistuneiden geeninsiirtojen aikaansaamiselle ja täten myös onnistuneelle geeniterapialle.Matilainen k…
Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides.
ABSTRACT Tumor cells and vasculature offer specific targets for the selective delivery of therapeutic genes. To achieve tumor-specific gene transfer, baculovirus tropism was manipulated by viral envelope modification using baculovirus display technology. LyP-1, F3, and CGKRK tumor-homing peptides, originally identified by in vivo screening of phage display libraries, were fused to the transmembrane anchor of vesicular stomatitis virus G protein and displayed on the baculoviral surface. The fusion proteins were successfully incorporated into budded virions, which showed two- to fivefold-improved binding to human breast carcinoma (MDA-MB-435) and hepatocarcinoma (HepG2) cells. The LyP-1 pepti…