Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.
The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifical…
MYST3/NCOA2-Induced Acute Myeloid Leukemia in Transgenic Fish
Abstract The MYST3/NCOA2 (MOZ/TIF2) fusion gene generated by the inv(8)(p11q13) chromosomal abnormality was described in a specific subgroup of acute myeloid leukemias (AML) that represents less than 5% of AML4/5. This abnormality fuses MYST3 (MOZ), a member of the MYST family of histone acetyl-transferases (HAT) to NCOA2 (TIF2), a member of the p160 HAT family. The transforming properties of MYST3/NCOA2 were demonstrated in mouse committed myeloid progenitors in vitro and in vivo. Hematopoiesis is very similar in zebrafish and in higher vertebrates. Homologues of a large number of genes involved in mammalian myelopoiesis were identified in this animal model. We have recently shown that nco…
TIF1γ : un gène suppresseur de tumeur dans la leucémie myélomonocytaire chronique
TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia
Background Acquired somatic deletions and loss-of-function mutations in one or several codons of the TET2 ( Ten-Eleven Translocation-2 ) gene were recently identified in hematopoietic cells from patients with myeloid malignancies, including myeloproliferative disorders and myelodys-plastic syndromes. The present study was designed to determine the prevalence of TET2 gene alterations in chronic myelomonocytic leukemias. Design and Methods Blood and bone marrow cells were collected from 88 patients with chronic phase chronic myelomonocytic leukemia and from 14 with acute transformation of a previously identified disease. Polymerase chain reaction analysis and direct sequencing were used to se…
L’approche de la notion de critère de jugement principal par les étudiants lors de l’épreuve de lecture critique d’article au cours des épreuves classantes nationales 2010
A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages
AbstractThe differentiation of human peripheral blood monocytes into macrophages can be reproduced ex vivo by culturing the cells in the presence of colony-stimulating factor 1 (CSF1). Using microarray profiling to explore the role of microRNAs (miRNAs), we identified a dramatic decrease in the expression of the hematopoietic specific miR-142-3p. Up- and down-regulation of this miRNA in primary human monocytes altered CSF1-induced differentiation of monocytes, as demonstrated by changes in the expression of the cell surface markers CD16 and CD163. One of the genes whose expression is repressed by miR-142-3p encodes the transcription factor Early Growth Response 2 (Egr2). In turn, Egr2 assoc…
A role for the transcription intermediary factor 2 in zebrafish myelopoiesis.
Objective TIF2 is fused with MOZ in the inv(8)(p11q13) acute myeloid leukemia. TIF2, member of the p160 family, is a histone acetyl transferase (HAT). Deletion of p160 genes were performed in mice. Some observations suggest that p160 family members may perform overlapping functions in mice. Therefore, we decided to choose the zebrafish model to study TIF2. The aim of this study was to characterize the role of this HAT during embryonic development. Material and Methods We use antisense, morpholino-modified oligomers to transiently knockdown tif2 gene, thus determining whether TIF2 plays a role in zebrafish early development. Results We show that tif2 is involved in embryogenesis and in primi…
Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia.
Transcription intermediary factor 1γ (TIF1γ) was suggested to play a role in erythropoiesis. However, how TIF1γ regulates the development of different blood cell lineages and whether TIF1γ is involved in human hematological malignancies remain to be determined. Here we have shown that TIF1γ was a tumor suppressor in mouse and human chronic myelomonocytic leukemia (CMML). Loss of Tif1g in mouse HSCs favored the expansion of the granulo-monocytic progenitor compartment. Furthermore, Tif1g deletion induced the age-dependent appearance of a cell-autonomous myeloproliferative disorder in mice that recapitulated essential characteristics of human CMML. TIF1γ was almost undetectable in leukemic ce…
Identification of novel, clonally stable, somatic mutations targeting transcription factors PAX5 and NKX2-3, the epigenetic regulator LRIF1, and BRAF in a case of atypical B-cell chronic lymphocytic leukemia harboring a t(14;18)(q32;q21)
Diagnosis of B-cell chronic lymphocytic leukemia (B-CLL) is usually straightforward, involving clinical, immunophenotypic (Matutes score), and (immuno)genetic analyses (to refine patient prognosis for treatment). CLL cases with atypical presentation (e.g., Matutes ≤ 3) are also encountered, and for these diseases, biology and prognostic impact are less clear. Here we report the genomic characterization of a case of atypical B-CLL in a 70-yr-old male patient; B-CLL cells showed a Matutes score of 3, chromosomal translocation t(14;18)(q32;q21) (BCL2/IGH), mutated IGHV, deletion 17p, and mutations in BCL2, NOTCH1 (subclonal), and TP53 (subclonal). Quite strikingly, a novel PAX5 mutation that w…
Unusual presentation of blastic plasmacytoid dendritic cell neoplasm: Pitfalls in other hematolymphoid neoplasms
Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare CD4+/CD56+ hematological malignancy with aggressive clinical course and poor prognosis. Histologically, BPDCN is characterized by a diffuse, monomorphous infiltration of cutaneous, subcutaneous, and sometimes other tissues such as lymph nodes and bone marrow, by medium-sized neoplastic cells with blastoid morphology. Typically, there is absence of lymphocytic infiltrate. Diagnosis relies on immunophenotypic expression of CD4, CD56, and the more specific markers of plasmacytoid dendritic cells CD123, CD303/BDCA2, and TCL1. We report a case of a 57-year-old man who presented a 4 cm-long solitary, erythemateous lesion on t…
The Histone Acetyl-Transferase MOZ Cooperates with the Histone Methyl-Transferase MLL to Regulate HOX Gene Expression in Human Hematopoietic Stem Cells
Abstract MOZ (MOnocytic leukaemia Zinc finger protein) (also called MYST3 or KAT6A) is a member of the MYST family of HATs which likely acetylate H4K16. The MLL (MixedLineageLeukemia) gene is a frequent target for recurrent chromosomal translocations found in AML and ALL. MLL (KMT2A) is a methyl-transferase targeting H3K4. It was shown that MOZ/CBP leukemia, as observed in MLL-rearranged leukemias, harbors abnormal levels of homeobox (HOX) genes expression. HOX transcription factors have a crucial function in hematopoiesis regulation. In addition, HOXA5, HOXA7, and HOXA9 are often considered to be pivotal HOX genes for MLL transformation, constituting downstream targets of MLL. In our study…
MiR-142-3p et leucémogenèse
Tif1gamma Is Essential for Macrophage Differentiation
Abstract Abstract 2370 TIF1gamma (or TRIM33) is an ubiquitous nuclear protein that belongs to the transcriptional intermediary factor 1 family. Human and mouse TIF1gamma are closely related to zebrafish moonshine (mon), a gene whose mutations disrupt embryonic and adult hematopoiesis with severe red blood cell aplasia. Targeted deletion of Tif1gamma is embryonic lethal in mice. In zebrafish and human CD34+ cells, TIF1gamma functionally links positive elongation factors such as p-TEFb and FACT to blood specific transcription complexes (e.g. the SCL/TAL1 complex) to regulate elongation of genes by antagonizing Pol II pausing. TIF1gamma also affects the human hematopoietic progenitor cell resp…
Symplekin, a polyadenylation factor, prevents MOZ and MLL activity on HOXA9 in hematopoietic cells
International audience; MOZ and MLL encoding a histone acetyltransferase and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. We have previously shown that MOZ and MLL cooperate to activate HOXA9 gene expression in hematopoietic stem/progenitors cells. To dissect the mechanism of action of this complex, we decided to identify new proteins interacting with MOZ. We found that the scaffold protein Symplekin that supports the assembly of polyadenylation machinery was identified by mass spectrometry. Symplekin interacts and co-localizes with both MOZ and MLL in immature hematopoietic cells. Its …
A MiR-142-3p/EGR2 Feedback Circuitry In Human CSF-1 Driven Differentiation of Monocytes Into Macrophages
Abstract Abstract 2366 Colony-stimulating factor-1 (CSF-1 or M-CSF) triggers the differentiation of human peripheral blood monocytes into macrophages through and integrated cytokine/transcription factors circuitry. Using microarray profiling to explore the role of microRNAs (miRNAs) in this molecular circuitry, we identified the down-regulation of miR-142-3p in human macrophages obtained from CSF-1-treated monocytes. We show that miR-142-3p is a repressor of the transcription factor EGR2 (Early Growth Response 2) through direct 3'UTR interactions. Interestingly, EGR2 binds the promoter of the pre-miR-142-3p gene to negatively regulate its expression, identifying a self-regulatory feedback l…
MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish.
The inv(8)(p11q13) chromosomal abnormality, described in acute myeloid leukaemias (AML), fuses the histone acetyl-transferase (HAT) MYST3 (MOZ) gene with another HAT gene, NCOA2 (TIF2). We generated a transgenic zebrafish in which the MYST3/NCOA2 fusion gene was expressed under control of the spi1 promoter. An AML developed in 2 of 180 MYST3/NCOA2-EGFP-expressing embryos, 14 and 26 months after injection of the fusion gene in a one-cell embryo, respectively. This leukaemia was characterised by an extensive invasion of kidneys by myeloid blast cells. This model, which is the first zebrafish model of AML, demonstrates the oncogenic potency of MYST3/NCOA2 fusion gene.
Un nouveau modèle murin du vieillissement de l’hématopoïèse
Un nouveau modele murin du vieillissement de l’hematopoiese Ronan Quere 1,2, Jean-Noel Bastie1,2,3, Laurent Delva1,2 1 Inserm, UMR 866, faculte de medecine, universite de Bourgogne, 7 boulevard Jeanne d’Arc, 21000 Dijon, France ; 2 Labex LipSTIC, universite de Bourgogne, 21000 Dijon, France ; 3 hopital universitaire, service d’hematologie clinique, 21000 Dijon, France. ronan.quere@inserm.fr laurent.delva@u-bourgogne.fr