0000000000066932

AUTHOR

Luc Nicoleau

0000-0003-0941-5977

showing 10 related works from this author

Atomistic modeling of crystal structure of Ca1.67SiHx

2015

The atomic structure of calcium-silicate-hydrate (C-1.67-S-H-x) has been investigated by theoretical methods in order to establish a better insight into its structure. Three models for C-S-H all derived from tobermorite are proposed and a large number of structures were created within each model by making a random distribution of silica oligomers of different size within each structure. These structures were subjected to structural relaxation by geometry optimization and molecular dynamics steps. That resulted in a set of energies within each model. Despite an energy distribution between individual structures within each model, significant energy differences are observed between the three m…

Materials scienceRelaxation (NMR)Structure (category theory)Applied ChemistryTobermoriteBuilding and ConstructionCrystal structureCalcium-Silicate-Hydrate (C-S-H) (B); Crystal Structure (B); Atomistic simulationEnergy minimizationInorganic ChemistryCrystallographyMolecular dynamicsChemical physicsTheoretical chemistryMoleculeGeneral Materials ScienceTheoretical Chemistry
researchProduct

Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials

2017

Controlled aggregation of polymer-stabilized calcium silicate hydrate nanoparticles leads to elastic cementitious materials.

Materials scienceMaterials ScienceNanoparticle02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundBrittlenessFracture toughnessFlexural strengthElasticity (economics)Calcium silicate hydrateComposite materialMesocrystalResearch ArticlesComputingMilieux_MISCELLANEOUSMultidisciplinarySciAdv r-articles021001 nanoscience & nanotechnology0104 chemical scienceschemistryPhysical Sciencesddc:540Cementitious[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyResearch Article
researchProduct

Identification of binding peptides on calcium silicate hydrate: a novel view on cement additives.

2014

Cement is the most used industrial product in the world. Although the chemical composition of the material has stayed more or less the same since its discovery by the Romans around 2000 years ago, [ 1 ] the performance has been increased by chemical additives. Spectacular buildings like the Willis Tower in Chicago, Taipei 101 or lately the over 800 m high Burj Khalifa in Dubai were realizable thanks to the development of high performance building materials. [ 2 ] Not only for such prestige objects but also in daily building processes, the trend goes towards always higher buildings because of the continued urbanization which was identifi ed already in 1982 as one of the so-called “megatrends…

Phage displayMaterials scienceSurface PropertiesSilicic AcidMineralogy02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundlawPeptide LibraryAmideNegative chargeGeneral Materials ScienceAmino Acid SequenceCalcium silicate hydrateComputingMilieux_MISCELLANEOUSCementMechanical EngineeringHydrogen BondingHydrogen-Ion Concentration021001 nanoscience & nanotechnology0104 chemical sciencesPortland cementchemistryChemical engineeringMechanics of MaterialsCalcium silicateddc:540Calcium[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyPeptidesHydrophobic and Hydrophilic InteractionsSilicate CementAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Rate-limiting reaction of C 3 S hydration - A reply to the discussion “A new view on the kinetics of tricalcium silicate hydration” by E. Gartner

2018

Abstract In the case of coupled solids-solution reactions, any mean accelerating or decelerating one of the reaction, will also change the other reaction(s) in the same way, through the coupling mediated by the solution. The observation of any kinetic change by one of these means should not lead to too rapid conclusion on the limitation of kinetics and it must be done with great caution. Contrary to what Gartner mentioned, the acceleration of C3S hydration by the addition of calcium silicate hydrate seeds, is not a trivial evidence suggesting that hydration kinetics “has to be” limited by the C-S-H precipitation and that the C3S dissolution can be neglected. In our paper, efforts have been …

ChemistryKinetics0211 other engineering and technologiesMineralogyThermodynamics02 engineering and technologyBuilding and ConstructionLimiting021001 nanoscience & nanotechnologychemistry.chemical_compound021105 building & constructionGeneral Materials ScienceHydration kineticsCalcium silicate hydrate0210 nano-technologyDissolutionTricalcium silicateCement and Concrete Research
researchProduct

Hydration of alite containing aluminium

2011

Abstract The most important phase in Portland cement is tricalcium silicate, which leads during its hydration to the nucleation and growth of calcium silicate hydrate [referred to as C–S–H, (CaO)x–SiO2–(H2O)y]. The development of this hydrate around the cement grains is responsible for the setting and hardening of cement pastes. The general term for designating the tricalcium silicate in cements is alite. This name relates to all polymorphs containing various foreign ions inserted in their structure. These ions may influence the intrinsic reactivity, and once released during the dissolution, they may interact also with C–S–H. One of the most likely species to be inserted in the alite struct…

CementMaterials scienceAliteNucleationMineralogychemistry.chemical_elementIndustrial and Manufacturing Engineeringlaw.inventionPortland cementchemistry.chemical_compoundchemistryChemical engineeringlawAluminiumCeramics and CompositesCalcium silicate hydrateHydrateDissolutionAdvances in Applied Ceramics
researchProduct

Two-Step Nucleation Process of Calcium Silicate Hydrate, the Nanobrick of Cement

2018

Despite a millennial history and the ubiquitous presence of cement in everyday life, the molecular processes underlying its hydration behavior, like the formation of calcium–silicate–hydrate (C–S–H), the binding phase of concrete, are mostly unexplored. Using time-resolved potentiometry and turbidimetry combined with dynamic light scattering, small-angle X-ray scattering, and cryo-TEM, we demonstrate C–S–H formation to proceed via a complex two-step pathway. In the first step, amorphous and dispersed spheroids are formed, whose composition is depleted in calcium compared to C–S–H and charge compensated with sodium. In the second step, these amorphous spheroids crystallize to tobermorite-typ…

CementMaterials scienceGeneral Chemical EngineeringNucleation02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmorphous solidlaw.inventionchemistry.chemical_compoundchemistryDynamic light scatteringChemical engineeringlawPhase (matter)PercolationMaterials Chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Calcium silicate hydrateCrystallization0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

A new view on the kinetics of tricalcium silicate hydration

2016

Abstract C3S hydration is an interesting example of chemical coupling between C3S dissolution, C–S–H and portlandite precipitation. It occurs because Ca2 +, OH− and silicate ions are present in C3S, in both hydration products and in the surrounding solution. Various experimental data sets reveal that the undersaturation with respect to C3S always increases when C3S hydration enters into the deceleratory phase, leading to the conclusion that C3S dissolution is at the origin of this deceleration, not C–S–H growth. In addition, as soon as portlandite precipitates, the dissolution limits the hydration already in the acceleratory hydration step. The evolution of the undersaturation cannot accoun…

Coalescence (physics)Precipitation (chemistry)ChemistryKineticsInorganic chemistry0211 other engineering and technologiesThermodynamics02 engineering and technologyBuilding and Constructionengineering.material021001 nanoscience & nanotechnologyPortlanditeSilicateIonchemistry.chemical_compoundPhase (matter)021105 building & constructionengineeringGeneral Materials Science0210 nano-technologyDissolutionCement and Concrete Research
researchProduct

Revised Atomistic Models of the Crystal Structure of C–S–H with high C/S Ratio

2016

Abstract The atomic structure of calcium-silicate-hydrate (C1.67–S–H x ) has been studied. Atomistic C–S–H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C–S–H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C–S–H. The new geometries of C–S–H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C–S…

Chemistry0211 other engineering and technologiesStructure (category theory)ThermodynamicsTobermorite02 engineering and technologyCrystal structure021001 nanoscience & nanotechnologyC-S-H Structure ; Atomistic Simulation ; ReaxFF Force Field ; Semiempirical Quantum ChemistryStability (probability)Physical ChemistryInorganic ChemistryMolecular dynamics021105 building & constructionTheoretical chemistryPhysical chemistryMoleculePhysical and Theoretical ChemistryReaxFF0210 nano-technologyTheoretical Chemistry
researchProduct

Study of alite containing aluminium hydration

2008

International audience

[CHIM.MATE] Chemical Sciences/Material chemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[CHIM.MATE]Chemical Sciences/Material chemistryComputingMilieux_MISCELLANEOUS
researchProduct

Hydration of alite containing alumimium

2009

International audience; The most important phase in cement is tricalcium silicate which leads during its hydration to the nucleation and growth of calcium silicate hydrate (referred to C-S-H (CaO)x-SiO2-(H2O)y). The development of this hydrate around the cement grains is responsible for the setting and hardening of cement pastes The general term for designating the tricalcium silicate in cements is alite. This name relates to all polymorphs containing various foreign ions inserted in their structure. These ions may influence the intrinsic reactivity and once released during the dissolution, they may interact also with C-S-H. The melt phase during clinkering is rich in aluminium and moreover…

[CHIM.MATE] Chemical Sciences/Material chemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[CHIM.MATE]Chemical Sciences/Material chemistry
researchProduct