0000000000067324

AUTHOR

Michael Block

Status of the project TRAPSENSOR: Performance of the laser-desorption ion source

Abstract Penning traps provide mass measurements on atomic nuclei with the highest accuracy and sensitivity. Depending on the experiment and on the physics goal, a relative mass uncertainty varying from 10 −7 to below 10 −11 is required. Regarding sensitivity, the use of only one ion for the measurement is crucial, either to perform mass measurements on superheavy elements (SHE), or to reach δ m / m ≈ 10 - 11 in order to contribute to the direct determination of the mass of the electron-antineutrino with accurate mass measurements on specific nuclei. This has motivated the development of a new technique called Quantum Sensor based on a laser-cooled ion stored in a Penning trap, to perform m…

research product

Chemical studies of Fl (element 114): Heaviest chemically studied element

research product

Spectroscopic Tools Applied to Flerovium Decay Chains

Abstract An upgraded TASISpec setup, with the addition of a veto DSSD and the new Compex detector-germanium array, has been employed with the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, to study flerovium (element 114) decay chains. The detector upgrades along with development of new analytical techniques have improved the sensitivity of the TASISpec setup for measuring α-photon coincidences. These improvements have been assessed with test reactions. The reaction 48Ca+206,207Pb was used for verification of experimental parameters such as transmission to implantation DSSD and target-segment to α-decay correlations. The reaction 48Ca+ nat …

research product

The identification and confirmation of isomeric states in 254Rf and 255Rf through conversion electron detection

Abstract The neutron-deficient isotopes 254,255Rf were produced in the fusion-evaporation reaction 50Ti + 206Pb at the gas-filled recoil separator TASCA. Decay properties of these nuclei were investigated by applying fast digital electronics. A search for isomeric states in both isotopes was performed by using the accompanying conversion electron emissions. Isomeric states with half-lives of 4(1) μs and >30 μs were measured for 254Rf and 255Rf, respectively, which confirm the findings at different separators. The present experimental results demonstrate the great potential of fast digital electronics for measurements of isomeric states in the heaviest nuclei, which are only producible in sm…

research product

Laser spectroscopy studies on nobelium

Laser spectroscopy of the heaviest elements provides high-precision data on their atomic and nuclear properties. For example, atomic level energies and ionization potentials allow us to probe the influence of relativistic effects on their atomic structure and to benchmark state-of-the-art atomic structure calculations. In addition, it offers an alternative route to determine nuclear properties like spins, magnetic moments and quadrupole moments in a nuclear model-independent way. Recently, a sensitive method based on resonant laser ionization has been applied to nobelium isotopes around N = 152 at GSI Darmstadt. In pioneering experiments, several atomic states have been identified extending…

research product

On-line commissioning of SHIPTRAP

Abstract The on-line commissioning of the Penning-trap mass spectrometer SHIPTRAP was successfully completed with a mass measurement of holmium and erbium radionuclides produced at SHIP. A large fraction of contaminant ions created in the stopping cell was identified to originate from the buffer-gas supply system. Using a liquid nitrogen cold trap they were reduced to a tolerable amount and mass measurements of Er 147 , Er 148 , and Ho 147 with relative uncertainties of about 1 × 1 0 − 6 were performed.

research product

Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains

Produced in the reaction 48Ca+243Am, thirty correlated α-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum fur Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, γ rays as well as X-ray candidates were observed in prompt coincidence with the α-decay chains of element 115.

research product

Dynamics of an unbalanced two-ion crystal in a Penning trap for application in optical mass spectrometry

In this article, the dynamics of an unbalanced two-ion crystal comprising the 'target' and the 'sensor' ions confined in a Penning trap has been studied. First, the low amplitude regime is addressed. In this regime, the overall potential including the Coulomb repulsion between the ions can be considered harmonic and the axial, magnetron and reduced-cyclotron modes split up into the so-called 'stretch' and 'common' modes, that are generalizations of the well-known 'breathing' and 'center-of-mass' motions of a balanced crystal made of two ions. By measuring the frequency modes of the crystal and the sensor ion eigenfrequencies using optical detection, it will be possible to determine the targ…

research product

Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am

Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z=115, two recoil-α-fission and five recoil-α-α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation ch…

research product

Qvalue and half-life of double-electron capture in184Os

The observation of neutrinoless double-beta transitionswould reveal physics beyond the Standard Model, asit would establish neutrinos to be Majorana particles,which implies a violation of the lepton number conserva-tion. Experiments searching for these transitions have fo-cused on the detection of neutrinoless double-beta decay(0 ) rather than neutrinoless double-electron capture(0). One reason among others is in general the sig-ni cantly shorter half-life of the 0 process. However,in the case of neutrinoless double-electron capture, thetransition is expected to be resonantly enhanced if theinitial and the nal state of the transition are degeneratein energy [1{3].In this work, we inves…

research product

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

research product

Production and Decay of Element 114: High Cross Sections and the New NucleusHs277

The fusion-evaporation reaction Pu-244(Ca-48, 3-4n)(288,289)114 was studied at the new gas-filled recoil separator TASCA. Thirteen correlated decay chains were observed and assigned to the production and decay of (288, 289)114. At a compound nucleus excitation energy of E* = 39.8-43.9 MeV, the 4n evaporation channel cross section was 9.8(-3.1)(+3.9) pb. At E* = 36.1-39.5 MeV, that of the 3n evaporation channel was 8.0-(+7.4)(4.5) pb. In one of the 3n evaporation channel decay chains, a previously unobserved alpha branch in (281)Ds was observed ( probability to be of random origin from background: 0.1%). This alpha decay populated the new nucleus (277)Hs, which decayed by spontaneous fission…

research product

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

research product

Electronic Structure of Lr+ (Z = 103) from Ab Initio Calculations

Atoms 10(2), 48 (2022). doi:10.3390/atoms10020048

research product

Quantum-state-selective decay spectroscopy of Ra213

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a $^{48}\mathrm{Ca}$ beam impinging on a thin $^{170}\mathrm{Er}$ target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the $5n$ evaporation channel $^{213}\mathrm{Ra}$ was mass-selected in SHIPTRAP, and the $^{213}\mathrm{Ra}$ ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 s…

research product

Some remarks on the discovery of Md-244

In two recent papers by Pore et al. and Khuyagbaatar et al., discovery of the new isotope $^{244}\mathrm{Md}$ was reported. The decay data, however, are conflicting. While Pore et al. report two isomeric states decaying by $\ensuremath{\alpha}$ emission with ${E}_{\ensuremath{\alpha}}(1)=8.66(2)\text{ }\text{ }\mathrm{MeV}$, ${T}_{1/2}(1)={0.4}_{\ensuremath{-}0.1}^{+0.4}\text{ }\text{ }\mathrm{s}$ and ${E}_{\ensuremath{\alpha}}(2)=8.31(2)\text{ }\text{ }\mathrm{MeV}$, ${T}_{1/2}(2)\ensuremath{\approx}6\text{ }\text{ }\text{ }\mathrm{s}$, Khuyagbaatar et al. [Phys. Rev. Lett. 125, 142504 (2020).] report only a single transition with a broad energy distribution of ${E}_{\ensuremath{\alpha}}=(…

research product

Spatial separation of atomic states in a laser-cooled ion crystal

A laser cooled ion crystal containing several hundred Ca+ ions has been stored in a linear Paul trap. Cooling is provided by a red detund laser at the 4S1/2−4P1/2 resonance transition. A second laser serves for repumping of those ions which decay from the excited 4P1/2 level to the metastable 3D3/2 state. The ions can be additionally excited by a third laser to a long lived metastable 3D5/2 energy level which decouples them from the cooling laser radiation. The light pressure acting upon the laser cooled ions pushes them into the direction of the laser beam. The ions in the metastable 3D5/2 state, however, do not experience any light pressure force and diffuse to the crystal side which poin…

research product

Octupolar-Excitation Penning-Trap Mass Spectrometry forQ-Value Measurement of Double-Electron Capture inEr164

The theory of octupolar-excitation ion-cyclotron-resonance mass spectrometry is presented which predicts an increase of up to several orders of magnitude in resolving power under certain conditions. The new method has been applied for a direct Penning-trap mass-ratio determination of the $^{164}\mathrm{Er}\mathrm{\text{\ensuremath{-}}}^{164}\mathrm{Dy}$ mass doublet. $^{164}\mathrm{Er}$ is a candidate for the search for neutrinoless double-electron capture. However, the measured ${Q}_{ϵϵ}$ value of 25.07(12) keV results in a half-life of ${10}^{30}$ years for a 1 eV Majorana-neutrino mass.

research product

Direct mass measurements of cadmium and palladium isotopes and their double-βtransitionQvalues

The Q-value of the double-electron capture in Cd-108 has been determined to be (272.04 +/- 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of Cd-108 is excluded. We have confirmed the double-beta transition Q-values of Cd-106 and Pd-110 recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides Cd-106, Cd-108, Cd-110, Pd-106, Pd-108 and Pd-110 have been directly linked to the atomic mass standard.

research product

High-precision mass measurements for the isobaric multiplet mass equation atA= 52

Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…

research product

Low-lying states in Ra219 and Rn215 : Sampling microsecond α -decaying nuclei

Short-lived α-decaying nuclei "northeast" of 208Pb in the chart of nuclides were studied using the reaction 48Ca+243Am with the decay station TASISpec at TASCA, GSI Darmstadt. Decay energies and times from pile-up events were extracted with a tailor-made pulse-shape analysis routine and specific α-decay chains were identified in a correlation analysis. Decay chains starting with the even-even 220Ra and its odd-A neighbors, 219Fr, and 219,221Ra, with a focus on the 219Ra→215Rn decay, were studied by means of α-γ spectroscopy. A revised α-decay scheme of 219Ra is proposed, including a new decay branch from a previously not considered isomeric state at 17 keV excitation energy. Conclusions on …

research product

The cryogenic gas stopping cell of SHIPTRAP

The overall efficiency of the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt, employed for high-precision mass measurements of exotic nuclei in the mass region above fermium, is presently mostly limited by the stopping and extraction of fusion-evaporation products in the SHIPTRAP gas cell. To overcome this limitation a second-generation gas cell with increased stopping volume was designed. In addition, its operation at cryogenic temperatures leads to a higher gas density at a given pressure and an improved cleanliness of the helium buffer gas. Here, the results of experiments with a 219Rn recoil ion source are presented. An extraction efficiency of 74(3)% was obtained, a significa…

research product

Spontaneous fission of rutherfordium isotopes - total kinetic energies

The isotopes 255,256,258Rf were produced in the fusion-evaporation reactions 50Ti + 207,208Pb and 50Ti + 209Bi at GSI Darmstadt, using the velocity filter SHIP. Total kinetic energies of fragments from spontaneous fission for these isotopes were evaluated with a correction to pulse-height defect.

research product

The decay energy of the pure s-process nuclide ¹²³ Te

Physics letters / B 758, 407 - 411 (2016). doi:10.1016/j.physletb.2016.04.059

research product

Geant4-aided Quantum State Selective Decay Spectroscopy of 213 Ra

Utilizing the excellent mass resolving power of SHIPTRAP and the charged-particle-g multicoincidence setup TASISpec, the decay path of the 213Ra ground state can be exclusively studied. Based on virtual experiments with Geant4 it is possible to refine the a-branching ratios of the 213Ra ground state as well as g-ray branching ratios in the 209Rn daughter. The present study provides a proof of concept where clean quantum-state selective particle-g decay spectroscopy is used in conjunction with detailed Geant4 Monte-Carlo simulations to gain insight into nuclear structure properties.

research product

Superheavy element flerovium (element 114) is a volatile metal.

The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Expe…

research product

Probing the nuclide 180W for neutrinoless double-electron capture exploration

Abstract The mass difference of the nuclides 180 W and 180 Hf has been measured with the Penning-trap mass spectrometer SHIPTRAP to investigate 180 W as a possible candidate for the search for neutrinoless double-electron capture. The Q ϵ ϵ -value was measured to 143.20(27) keV. This value in combination with the calculations of the atomic electron wave functions and other parameters results in a half-life of the 0 + → 0 + ground-state to ground-state double-electron capture transition of approximately 5 × 10 27 years / 〈 m ϵ ϵ [ eV ] 〉 2 .

research product

A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP

© 2019 Elsevier B.V. Laser spectroscopy enables the determination of fundamental atomic and nuclear properties with high precision. In view of the low production rates of the heaviest elements, a high total efficiency is a crucial requirement for any experimental setup to be used in on-line experiments. The setup requires the use of gas stopping techniques to slow down the radionuclides of interest. In previous studies laser spectroscopy was performed inside a gas-filled stopping cell with a limited spectral resolution of a few GHz. Collisional broadening inside stopping cells ultimately limits the precision of laser spectroscopic studies and hampers in particular hyperfine spectroscopy. Th…

research product

Double-βtransformations in isobaric triplets with mass numbersA=124, 130, and 136

The Q values of double-electron capture in ${}^{124}$Xe, ${}^{130}$Ba, and ${}^{136}$Ce and double-beta decay of ${}^{124}$Sn and ${}^{130}$Te have been determined with the Penning-trap mass spectrometer SHIPTRAP with a few hundred eV uncertainty. These nuclides are members of three isobaric triplets with common daughter nuclides. The main goal of this work was to investigate the existence of the resonant enhancement of the neutrinoless double-electron-capture rates in ${}^{124}$Xe and ${}^{130}$Ba in order to assess their suitability for the search for neutrinoless double-electron capture. Based on our results, in neither of these cases is the resonance condition fulfilled.

research product

Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with RADRIS

International audience; The radiation detection resonance ionization spectroscopy (RADRIS) technique enables laser spectroscopic investigations of the heaviest elements which are produced in atom-at-a-time quantities from fusion-evaporation reactions. To achieve a high efficiency, laser spectroscopy is performed in a buffer-gas environment used to thermalize and stop the high-energy evaporation residues behind the velocity filter SHIP. The required cyclic measurement procedure in combination with the applied filament collection for neutralization as well as confinement of the stopped ions and subsequent pulse-heat desorption constrains the applicability of the technique. Here, some of these…

research product

The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes

© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …

research product

A Progress Report on Laser Resonance Chromatography

Atoms 10(3), 87 (2022). doi:10.3390/atoms10030087

research product

Towards saturation of the electron-capture delayed fission probability: The new isotopes $^{240}Es$ and $^{236}Bk$

Abstract The new neutron-deficient nuclei 240 Es and 236 Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240 Es produced in the fusion–evaporation reaction 209 Bi( 34 S,3n) 240 Es. Half-lives of 6 ( 2 ) s and 22 − 6 + 13 s were obtained for 240 Es and 236 Bk, respectively. Two groups of α particles with energies E α = 8.19 ( 3 ) MeV and 8.09 ( 3 ) MeV were unambiguously assigned to 240 Es. Electron-capture delayed fission branches with probabilities of 0.16 ( 6 ) and 0.04 ( 2 ) were measured for 240 Es and 236 Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilitie…

research product

A new assessment of the alleged link between element 115 and element 117 decay chains

Physics letters 760, 293-296(2016). doi:10.1016/j.physletb.2016.07.008

research product

Fission in the landscape of heaviest elements: Some recent examples

The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10^−19 to 10^24 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10^5 to 10^3 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254−256Rf and 266Lr ar…

research product

IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator

Abstract A dedicated Inelastic Reaction Isotope Separator (IRiS) for multi-nucleon transfer products will be designed and installed at GSI. Research at IRiS will focus on the investigation of new neutron-rich isotopes of the heaviest elements, study of which will advance various research fields, such as nuclear chemistry, nuclear and atomic physics, as well as nuclear astrophysics. The scientific motivation for this project and the alternative design options for the separator and its main components are discussed.

research product

Electronic structure of Rf + ( Z = 104 ) from ab initio calculations

We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: Rf+. We use the four-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction model to tackle the complex electronic structure problem that combines strong relativistic effects and electron correlation. We determine the energies of the ground and the low-lying excited states of Rf+, which originate from the 7s26d1,7s16d2,7s27p1, and 7s16d17p1 configurations. The results are discussed vis-à-vis the lighter homolog Hf+ ion. We also assess the uncertainties of the predicted energy levels. The main purpose of the presented calculations is to provi…

research product

Electronic structure of Rf+ (Z=104) from ab initio calculations

We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: ${\mathrm{Rf}}^{+}$. We use the four-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction model to tackle the complex electronic structure problem that combines strong relativistic effects and electron correlation. We determine the energies of the ground and the low-lying excited states of ${\mathrm{Rf}}^{+}$, which originate from the $7{s}^{2}6{d}^{1},\phantom{\rule{0.28em}{0ex}}7{s}^{1}6{d}^{2},\phantom{\rule{0.28em}{0ex}}7{s}^{2}7{p}^{1}$, and $7{s}^{1}6{d}^{1}7{p}^{1}$ configurations. The results are discussed vis-\`a-vis the lighter h…

research product

Rapid extraction of short-lived isotopes from a buffer gas cell for use in gas-phase chemistry experiments. Part I: Off-line studies with  219Rn and  221Fr

Abstract To study the chemical properties of the heaviest elements, a fast and efficient stopping and extraction of the highly energetic residues from heavy ion fusion reactions into the chemistry setup is essential. Currently used techniques like Recoil Transfer Chambers (RTC) relying on gas flow extraction provide high efficiencies for chemically non-reactive volatile species, but operate at extraction times t extr of about 0.5 s or more. Buffer Gas Cells (BGC) with electric and Radio-Frequency (RF) fields offer much faster extraction times. Here, we demonstrate the successful coupling of a BGC to a gas chromatography setup as is used for studies of chemical properties of superheavy eleme…

research product

Measurement and simulation of the pressure ratio between the two traps of double Penning trap mass spectrometers

Penning traps are ideal tools to perform high-precision mass measurements. For this purpose the cyclotron frequency of the stored charged particles is measured. In case of on-line mass measurements of short-lived nuclides produced at radioactive beam facilities the ions get in general first prepared and cooled by buffer-gas collisions in a preparation trap to reduce their motional amplitudes and are then transported to a precision trap for the cyclotron frequency determination. In modern Penning trap mass spectrometers both traps are placed in the homogeneous region of one superconducting magnet to optimize the transport efficiency. Because the gas pressure inside the precision trap has to …

research product

Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP

Abstract The experimental determination of atomic levels and the first ionization potential of the heaviest elements ( Z ⩾ 100 ) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniq…

research product

COMPASS—A COMPAct decay spectroscopy set-up

Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …

research product

Production of negative osmium ions by laser desorption and ionization.

The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionizat…

research product

Resonant enhancement of neutrinoless double-electron capture in 152Gd.

In the search for the nuclide with the largest probability for neutrinoless double-electron capture, we have determined the ${Q}_{ϵϵ}$ value between the ground states of $^{152}\mathrm{Gd}$ and $^{152}\mathrm{Sm}$ by Penning-trap mass-ratio measurements. The new ${Q}_{ϵϵ}$ value of 55.70(18) keV results in a half-life of ${10}^{26}\text{ }\text{ }\mathrm{yr}$ for a 1 eV neutrino mass. With this smallest half-life among known $0\ensuremath{\nu}ϵϵ$ transitions, $^{152}\mathrm{Gd}$ is a promising candidate for the search for neutrinoless double-electron capture.

research product

Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266

The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…

research product

3d

We have measured the lifetime of the metastable 3D 5/2 level in Ca+ using the “quantum jump" technique on a single stored and laser cooled ion in a linear Paul trap. We found a linear dependence of the measured decay rate on the power of the laser which repumps the ions from the long lived 3D 3/2 level. This can be explained by off-resonant depletion of the 3D 5/2 level. The proper lifetime of this level is obtained by a linear extrapolation of the measured lifetime to zero laser power. We obtain 1100(18) ms in agreement with theoretical calculations. The observed systematic change of the decay rate resolves discrepancies between earlier experiments in which this effect had not been conside…

research product

TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on…

research product

Measurements of ground-state properties for nuclear structure studies by precision mass and laser spectroscopy

Atomic physics techniques like Penning-trap and storage-ring mass spectrometry as well as laser spectroscopy have provided sensitive high-precision tools for detailed studies of nuclear ground-state properties far from the valley of β-stability. Mass, moment and nuclear charge radius measurements in long isotopic and isotonic chains have allowed extraction of nuclear structure information such as halos, shell and subshell closures, the onset of deformation, and the coexistence of nuclear shapes at nearly degenerate energies. This review covers experimental precision techniques to study nuclear ground-state properties and some of the most recent results for nuclear structure studies.

research product

TRIGA-SPEC: the prototype of MATS and LaSpec

Investigation of short-lived nuclei is a challenging task that MATS and LaSpec will handle at the low energy branch of Super-FRS at FAIR. The groundwork for those experiments is laid-out already today at the TRIGA-SPEC facility as a powerful development platform located at the research reactor TRIGA Mainz. The latest status, new developments and first results of commissioning runs are presented here.

research product

Direct mass measurements above uranium bridge the gap to the island of stability

The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…

research product

Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps

Abstract Laser spectroscopic methods are reviewed which are of potential interest for the investigation of atomic and ionic level structures of superheavy elements. The latter are defined here as the trans-fermium elements with Z > 100 for which no experimental atomic or ionic level structure information is known so far, and which cannot be bred in high flux nuclear power reactors via successive neutron capture. The principles of suitable laser spectroscopic methods are described, and illustrated by examples of real experiments. The addressed methods include single-ion spectroscopy in Paul traps, laser-induced fluorescence spectroscopy (LIF), radiation-detected optical pumping (RADOP), radi…

research product

RAPTOR : A new collinear laser ionization spectroscopy and laser-radiofrequency double-resonance experiment at the IGISOL facility

RAPTOR, Resonance ionization spectroscopy And Purification Traps for Optimized spectRoscopy, is a new collinear resonance ionization spectroscopy device constructed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyv\"askyl\"a, Finland. By operating at beam energies of under 10 keV, the footprint of the experiment is reduced compared to more traditional collinear laser spectroscopy beamlines. In addition, RAPTOR is coupled to the JYFLTRAP Penning trap mass spectrometer, opening a window to laser-assisted nuclear-state selective purification, serving not only the mass measurement program, but also supporting post-trap decay spectroscopy experiments. Finally,…

research product

Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…

research product

Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

Atoms 10(2), 41 (2022). doi:10.3390/atoms10020041

research product

Atom-at-a-time laser resonance ionization spectroscopy of nobelium

Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…

research product

Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides

A novel approach based on the projection of the Penning-trap ion motion onto a position-sensitive detector opens the door to very accurate mass measurements on the ppb level even for short-lived nuclides with half-lives well below a second. In addition to the accuracy boost, the new method provides a superior resolving power by which low-lying isomeric states with excitation energy on the 10-keV level can be easily separated from the ground state. A measurement of the mass difference of ^{130}Xe and ^{129}Xe has demonstrated the great potential of the new approach.

research product

The TRAPSENSOR facility: an open-ring 7 tesla Penning trap for laserbased precision experiments

APenning-trap facility for high-precision mass spectrometry based on a novel detection method has been built. This method consists in measuring motional frequencies of singly-charged ions trapped in strong magnetic fields through the fluorescence photons from laser-cooled 40Ca+ ions, to overcome limitations faced in electronic single-ion detection techniques. The key element of this facility is an open-ring Penning trap coupled upstream to a preparation Penning trap similar to those used at Radioactive Ion Beam facilities. Here we present a full characterization of the trap and demonstrate motional frequency measurements of trapped ions stored by applying external radiofrequency fields in r…

research product

High-precision measurements of the hyperfine structure of cobalt ions in the deep ultraviolet range

Scientific reports 13(1), 4783 (2023). doi:10.1038/s41598-023-31378-1

research product

Precision Measurement of the First Ionization Potential of Nobelium

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05  eV. This work provides a stringent benchmark for st…

research product

Shifts of the 3D - 4P transitions in different isotopes of positive calcium ions

A sample of stable isotopes containing the masses 40, 42, 43 and 44 was stored under buffer-gas conditions in a Paul ion trap. After population of the metastable 3D levels by spontaneous decay of the laser-excited 4P state we observed laser-induced fluorescence when we scanned a laser across the different 3D - 4P fine-structure lines at 850, 854 and 866 nm. From the Doppler-limited lines of these transitions we deduced the isotope shifts, which are of the order of several GHz due to the large specific mass shift of the metastable 3D levels.

research product

First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in thePu244(Ca48,3-4n) reaction

Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of Ca-48 to irradiate targets of Pb206-208, which led to the production of No252-254 isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ((288-291)114) were produced in irradiations of Pu-244 targets with Ca-48 beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were as…

research product

Spatial separation of atomic states in a laser cooled ion crystal

A laser cooled ion crystal containing several hundred Ca+ ions has been stored in a linear Paul trap. Cooling is provided by a red detund laser at the 4S1/2−4P1/2 resonance transition. A second laser serves for repumping of those ions which decay from the excited 4P1/2 level to the metastable 3D3/2 state. The ions can be additionally excited by a third laser to a long lived metastable 3D5/2 energy level which decouples them from the cooling laser radiation. The light pressure acting upon the laser cooled ions pushes them into the direction of the laser beam. The ions in the metastable 3D5/2 state, however, do not experience any light pressure force and diffuse to the crystal side which poin…

research product

Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure

Abstract The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins and electromagnetic moments of exotic nuclides has recently been extended to the region of the heaviest elements. To this end, ion trap-based techniques and laser spectroscopy methods have been employed to provide information complementary to that obtained by nuclear spectroscopy. This enables more detailed studies of the atomic and nuclear structure of these exotic nuclides far from stability. This contribution summarizes some of the recent achievements and addresses future perspectives for measurements on even heavier elements.

research product

Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility…

research product

Direct mass measurements and ionization potential measurements of the actinides

Abstract The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins, electromagnetic moments and the ionization potential of the actinides has been extended to the late actinides in recent years. In particular, laser spectroscopy and mass spectrometry have reached the region of heavy actinides that can only be produced only at accelerator facilities. The new results provide deeper insight into the impact of relativistic effects on the atomic structure and the evolution of nuclear shell effects around the deformed neutron shell closure at N = 152. All these experimental activities have also opened the door to extend such measurements t…

research product

Electron and positron cooling of highly charged ions in a cooler Penning trap

Abstract Electron cooling is a well-established technique to increase the phase space density of particle beams in storage rings. In this paper, we discuss the feasibility of electron and positron cooling of ions in a Penning trap. We calculate the cooling times for the cases of trapped bare ions with nuclear charge Z =1 (protons), Z =36 (krypton) and Z =92 (uranium) with the Spitzer formula. Our calculations show that for typical experimental conditions the time for cooling from initial energies of 10 keV per charge down to rest is in the order of a second. We investigate the dependence of the cooling time on the number of ions and electrons, and their charge and mass.

research product

Direct Measurement of the Mass Difference ofHo163andDy163Solves theQ-Value Puzzle for the Neutrino Mass Determination

The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensit…

research product

Isotope dependence of the Zeeman effect in lithium-like calcium

The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions an…

research product

Direct mass measurements of the heaviest elements with Penning traps

Abstract Penning-trap mass spectrometry (PTMS) is a mature technique to provide atomic masses with highest precision. Applied to radionuclides it enables us to investigate their nuclear structure via binding energies and derived quantities such as nucleon separation energies. Recent progress in slowing down radioactive ion beams in buffer gas cells in combination with advanced ion-manipulation techniques has opened the door to access even the elements above fermium by PTMS. Such elements are produced in complete fusion–evaporation reactions of heavy ions with lead, bismuth, and actinide targets at very low rates. Pioneering high-precision mass measurements of nobelium and lawrencium isotope…

research product

Investigation of the magnetic field fluctuation and implementation of a temperature and pressure stabilization at SHIPTRAP

Abstract Penning traps have proven to be powerful tools for the determination of nuclear masses with high accuracy. A crucial parameter for precision mass measurements in Penning traps is the accurate determination of the magnetic-field strength. However, the magnetic field of a superconducting magnet is not constant in time, but changes due to intrinsic effects of the solenoid and external perturbations. These effects have been investigated for SHIPTRAP. Furthermore, a stabilization of the temperature in the magnet bore as well as of the pressure in the liquid-helium cryostat has been implemented. Thus, the magnetic-field related uncertainties have been reduced to 7(6)×10−11/h.

research product

Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements

With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…

research product

Search for elements 119 and 120

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

research product

In-gas laser ionization and spectroscopy of actinium isotopes near the N=126 closed shell

The in-gas laser ionization and spectroscopy (IGLIS) techniquewas applied on the $^{212–215}$Ac isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the $^{212–215}$Ac isotopes, electric-quadrupole moments and nuclear spins for the $^{214,215}$Ac isotopes are presented and discussed. A good agreement is obtained with lar…

research product

A setup to develop novel Chemical Isobaric SEparation (CISE)

Abstract Gas catchers are widely used to thermalize nuclear reaction products and subsequently extract them for precision measurements. However, impurities in the inert stopping gas can chemically react with the ions and thus influence the extraction efficiency. So far, chemical reactions in the gas-catcher have not been investigated in detail. Therefore, we are currently building a new setup to develop Chemical Isobaric SEparation (CISE) with the aim to understand the chemistry inside the gas-catcher and to explore its potential as a new technique for separation of isobars. In this paper, we give a short description of the setup together with the ion transportation studies performed via io…

research product

Quartz resonators for penning traps toward mass spectrometry on the heaviest ions

We report on cyclotron frequency measurements on trapped 206,207Pb+ ions by means of the non-destructive Fourier-transform ion-cyclotron-resonance technique at room temperature. In a proof-of-principle experiment using a quartz crystal instead of a coil as a resonator, we have alternately carried out cyclotron frequency measurements for 206Pb+ and 207Pb+ with the sideband coupling method to obtain 21 cyclotron-frequency ratios with a statistical uncertainty of 6 × 10−7. The mean frequency ratio R¯ deviates by about 2σ from the value deduced from the masses reported in the latest Atomic Mass Evaluation. We anticipate that this shift is due to the ion–ion interaction between the simultaneousl…

research product

Search for Electron-Capture Delayed Fission in the New Isotope Md244

The electron-capture decay followed by a prompt fission process was searched for in the hitherto unknown most neutron-deficient Md isotope with mass number 244. Alpha decay with $\ensuremath{\alpha}$-particle energies of 8.73--8.86 MeV and with a half-life of ${0.30}_{\ensuremath{-}0.09}^{+0.19}\text{ }\text{ }\mathrm{s}$ was assigned to $^{244}\mathrm{Md}$. No fission event with a similar half-life potentially originating from spontaneous fissioning of the short-lived electron-capture decay daughter $^{244}\mathrm{Fm}$ was observed, which results in an upper limit of 0.14 for the electron-capture branching of $^{244}\mathrm{Md}$. Two groups of fission events with half-lives of ${0.9}_{\ens…

research product

New Short-Lived IsotopeU221and the Mass Surface NearN=126

Two short-lived isotopes ^{221}U and ^{222}U were produced as evaporation residues in the fusion reaction ^{50}Ti+^{176}Yb at the gas-filled recoil separator TASCA. An α decay with an energy of E_{α}=9.31(5)  MeV and half-life T_{1/2}=4.7(7)  μs was attributed to ^{222}U. The new isotope ^{221}U was identified in α-decay chains starting with E_{α}=9.71(5)  MeV and T_{1/2}=0.66(14)  μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced widt…

research product

Damping effects in Penning trap mass spectrometry

Abstract Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ra…

research product

First online operation of TRIGA-TRAP

Abstract We report on the successful coupling of the Penning-trap mass spectrometry setup TRIGA-TRAP to the research reactor TRIGA Mainz. This offers the possibility to perform direct high-precision mass measurements of short-lived nuclei produced in neutron-induced fission of a 235 U target located near the reactor core. An aerosol-based gas-jet system is used for efficient transport of short-lived neutron-rich nuclei from the target chamber to a surface ion source. In conjunction with new ion optics and extended beam monitoring capabilities, the experimental setup has been fully commissioned. The design of the surface ion source, efficiency studies and first results are presented.

research product

Position-sensitive ion detection in precision Penning trap mass spectrometry

A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.

research product

Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

research product

Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

research product

The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP

Direct high-precision mass spectrometry of the heaviest elements with SHIPTRAP, at GSI in Darmstadt, Germany, requires high efficiency to deal with the low production rates of such exotic nuclides. A second-generation gas stopping cell, operating at cryogenic temperatures, was developed and recently integrated into the relocated system to boost the overall efficiency. Offline measurements using 223Ra and 225Ac recoil-ion sources placed inside the gas volume were performed to characterize the gas stopping cell with respect to purity and extraction efficiency. In addition, a first online test using the fusion-evaporation residue 254No was performed, resulting in a combined stopping and extrac…

research product

Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer RIGA-TRAP

The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard $^{12}\mathrm{C}$. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3--4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are dis…

research product

K isomerism in Rf255 and total kinetic energy measurements for spontaneous fission of Rf255,256,258

Spontaneous fission properties of the isotopes $^{255}\mathrm{Rf}$, $^{256}\mathrm{Rf}$, and $^{258}\mathrm{Rf}$ produced in the reactions $^{50}\mathrm{Ti}+^{207}\mathrm{Pb}$, $^{50}\mathrm{Ti}+^{208}\mathrm{Pb}$, and $^{50}\mathrm{Ti}+^{209}\mathrm{Bi}$ were studied. The method of time and position correlations was used to identify spontaneous fission events. The correction to the energy deficit in measured total kinetic energy (TKE) determined on the basis of a study of $^{252}\mathrm{No}$ was applied to evaluate the $\overline{\mathrm{TKE}}$ of investigated rutherfordium isotopes. A signature which we assigned tentatively to bimodal fission was observed in TKE distributions of $^{255}\m…

research product

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.

research product

Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion.

An open-ring ion trap, also referred to as transparent trap was initially built up to perform $\beta$-$\nu$ correlation experiments with radioactive ions. This trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single $^{40}$Ca$^+$ ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on $^{40}$Ca$^+$ ions, starting from large clouds and reaching single ion sensitivity.…

research product

Mass measurements and ion-manipulation techniques applied to the heaviest elements

NS160, Bäckaskog, Sweden, 29 May 2016 - 3 Jun 2016; The European physical journal / Web of Conferences 131, 05003 (2016). doi:10.1051/epjconf/201613105003

research product

Targets on superhydrophobic surfaces for laser ablation ion sources

Target preparation techniques for a laser ablation ion source at the Penning-trap mass spectrometer TRIGA-TRAP have been investigated with regard to future experiments with actinides. To be able to perform mass measurements on these nuclides considering their limited availability, an efficient target preparation technique is mandatory. Here, we report on a new approach for target production using backings, which are pretreated in a way that a superhydrophobic surface is formed. This resulted in improved targets with a more homogeneous distribution of the target material compared to standard techniques with unmodified backings. It was demonstrated that the use of these new targets in a laser…

research product

Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )

The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…

research product

Study of non-fusion products in the Ti50+Cf249 reaction

The isotopic distribution of nuclei produced in the 50Ti + 249Cf reaction has been studied at the gas-filled recoil separator TASCA at GSI Darmstadt, which separates ions according to differences in magnetic rigidity. The bombardment was performed at an energy around the Bass barrier and with the TASCA magnetic fields set for collecting fusion-evaporation reaction products. Fifty-three isotopes located “north-east” of 208Pb were identified as recoiling products formed in non-fusion channels of the reaction. These recoils were implanted with energies in two distinct ranges; besides one with higher energy, a significant low-energy contribution was identified. The latter observation was not ex…

research product

Spectroscopy along Flerovium Decay Chains: Discovery ofDs280and an Excited State inCn282

A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively. A prompt coincidence between a 9.60(1)-MeV α particle event and a 0.36(1)-MeV conversion electron marked the first observation of an excited state in an even-even isotope of the heaviest man-made eleme…

research product

A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions

Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluoresce…

research product

Direct high-precision mass measurements onAm241,243,Pu244, andCf249

The absolute masses of four long-lived transuranium nuclides, $^{241,243}\mathrm{Am}$, $^{244}\mathrm{Pu}$, $^{244}\mathrm{Pu}$, and $^{249}\mathrm{Cf}$, in the vicinity of the deformed $N=152$ neutron shell closure have been measured directly with the Penning-trap mass spectrometer TRIGA-TRAP. Our measurements confirm the AME2012 mass values of $^{241,243}\mathrm{Am}$ and $^{244}\mathrm{Pu}$ within one standard deviation, which were indirectly determined, by decay spectroscopy studies. In the case of the $^{249}\mathrm{Cf}$ mass, a discrepancy of more than three standard deviations has been observed, affecting absolute masses even in the superheavy element region. The implementation of the…

research product

To identify the atomic number of superheavy nuclei produced in Ca-48-induced fusion-evaporation reactions, an experiment aiming at measuring characteristic X-rays is being prepared at GSI, Darmstadt, Germany. The gas-filled separator TASCA will be employed, sending the residues towards the multi-coincidence detector setup TASISpec. Two ion-optical modes relying on differing magnetic polarities of the quadrupole magnets can be used at TASCA. New simulations and experimental tests of transmission and background suppression for these two focusing modes into TASISpec are presented.

research product

TASCAを用いたCn, Nh, Fl化学実験のためのHg, Tl, PbのSiO2及びAu表面に対するオンライン化学吸着研究

Online gas-solid adsorption studies with single atom quantities of Hg, Tl, and Pb on SiO$_{2}$ and Au surfaces were carried out using short-lived radioisotopes with half-lives in the range of 4-49 s. This is a model study to measure adsorption enthalpies of superheavy elements Cn, Nh, and Fl. The short-lived isotopes were produced and separated by the gas-filled recoil separator TASCA at GSI. The products were stopped in He gas, and flushed into gas chromatography columns made of Si detectors whose surfaces were covered by SiO$_{2}$ or Au. The short-lived Tl and Pb were successfully measured by the Si detectors with the SiO$_{2}$ surface at room temperature. On the other hand, the Hg did no…

research product

Study of the radiative decay of the low-energy isomer in ${}^{229}$Th

research product

Recent progress in laser spectroscopy of the actinides

The interest to perform laser spectroscopy in the heaviest elements arises from the strong impact of relativistic effects, electron correlations and quantum electrodynamics on their atomic structure. Once this atomic structure is well understood, laser spectroscopy also provides access to nuclear properties such as spins, mean square charge radii and electromagnetic moments in a nuclear-model independent way. This is of particular interest for the heaviest actinides around $N = 152$, a region of shell stabilized deformed nuclei. The experimental progress of laser spectroscopy in this region benefitted from continuous methodological and technical developments such as the introduction of buff…

research product

Resolution Characterizations of JetRIS in Mainz Using 164Dy

Atoms 10(2), 57 (2022). doi:10.3390/atoms10020057

research product

Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium

International audience; Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are c…

research product

Simulation studies of the laser ablation ion source at the SHIPTRAP setup

Hyperfine interactions 241(1), 46 (2020). doi:10.1007/s10751-020-01708-0

research product

Recent developments in Penning-trap mass spectrometry

Abstract Penning-trap mass spectrometry provides atomic masses with the highest precision. At accelerator-based on-line facilities it is applied to investigate exotic radionuclides in the context of tests of fundamental symmetries, nuclear structure studies, and nuclear astrophysics research. Recent progress in slowing down radioactive ion-beams in buffer-gas cells in combination with advanced ion-manipulation techniques has paved the way to reach nuclides ever-more far from stability. In this endeavor many efforts are underway to increase the sensitivity, the efficiency, and the precision of Penning-trap mass spectrometry. In this article some recent experimental developments are addressed…

research product