0000000000067442

AUTHOR

Louis Maes

showing 2 related works from this author

Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis

2018

Abstract: Chemotherapy is currently the only effective approach to treat all forms of leishmaniasis. However, its effectiveness is severely limited due to high toxicity, long treatment length, drug resistance, or inadequate mode of administration. As a consequence, there is a need to identify new molecular scaffolds and targets as potential therapeutics for the treatment of this disease. We report a small series of 1,2‐substituted‐1H‐benzo[d]imidazole derivatives (9ad) showing affinity in the submicromolar range (Ki = 0.150.69 μM) toward Leishmania mexicanaCPB2.8ΔCTE, one of the more promising targets for antileishmanial drug design. The compounds confirmed activity in vitro against intrace…

BenzimidazoleCell SurvivalIn silicoLeishmania mexicanaAntiprotozoal AgentsDrug Evaluation PreclinicalProtozoan ProteinsDrug resistanceCysteine Proteinase InhibitorsPharmacologyAntileishmanial agents Benzimidazole derivatives Docking studies In silico profiling Leishmania mexicanaCPB2.8 Biochemistry Molecular Medicine01 natural sciencesBiochemistryLeishmania mexicanaCell LineInhibitory Concentration 50chemistry.chemical_compoundCysteine ProteasesDrug DiscoverymedicineHumansAmastigoteLeishmaniasisBiologyEnzyme AssaysPharmacologyBinding Sitesbiology010405 organic chemistryChemistryPharmacology. TherapyOrganic ChemistryHydrogen BondingLeishmaniasisbiology.organism_classificationmedicine.diseaseLeishmaniaProtein Structure Tertiary0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistryChemistryMolecular MedicineBenzimidazolesHuman medicineLeishmania infantumChemical biology and drug design
researchProduct

Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE

2018

Abstract: In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8CTE, fused benzo[b]thiophenes and ,'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20m). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-to…

Cell SurvivalLeishmania mexicanaProtozoan ProteinsADME-Tox; Benzo[b]thiophenes; Cysteine protease; Leishmaniasis; TriketonesThiophenesCysteine Proteinase Inhibitors010402 general chemistry01 natural sciencesBiochemistryLeishmania mexicanaCysteine Proteinase InhibitorsCell LineInhibitory Concentration 50Structure-Activity RelationshipCysteine ProteasesCatalytic DomainDrug DiscoveryHumansStructure–activity relationshipcysteine proteaseBinding siteADME-Tox; benzo[b]thiophenes; cysteine protease; leishmaniasis; triketones; Biochemistry; Molecular MedicineBiologyleishmaniasisPharmacologychemistry.chemical_classificationVirtual screeningBinding Sitesbiology010405 organic chemistryPharmacology. TherapyOrganic Chemistrytriketonesbiology.organism_classificationCysteine protease0104 chemical sciencesMolecular Docking SimulationChemistryEnzymeBiochemistrychemistryDocking (molecular)ADME-ToxMolecular Medicinebenzo[b]thiophenes
researchProduct