0000000000067702

AUTHOR

Gloria Alzuet Piña

0000-0003-0003-0413

DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides.

Abstract Ternary copper(II) complexes [Cu(NST)2(phen)] (1) and [Cu(NST)2(NH3)2]·H2O (2) [HNST = N-(4,5-dimethylthiazol-2-yl)naphthalene-1-sulfonamide] were prepared and characterized by physico-chemical techniques. Both 1 and 2 were structurally characterized by X-ray crystallography. The crystal structures show the presence of a distorted square planar CuN4 geometry in which the deprotonated sulfonamide, acting as monodentate ligand, binds to the metal ion through the thiazole N atom. Both complexes present intermolecular π–π stacking interactions between phenanthroline rings (compound 1) and between naphthalene rings (compound 2). The interaction of the complexes with CT DNA was studied b…

research product

Modulating the DNA cleavage ability of copper(II) Schiff bases through ternary complex formation

Copper(II) complexes with the potentially tridentate Schiff bases N-[(3-ethoxy-2-hydroxyphenyl)methylidene]-N′-tosylbenzene-1,2-diamine (H2L1) and N-[(2-hydroxynaphthanyl)methylidene]-N′-tosylbenzene-1,2-diamine (H2L2) have been synthesized by electrochemical oxidation of the metal in an electrochemical cell containing a solution of the corresponding ligand in acetonitrile. Adducts of these compounds with 2,2′-bipyridine (2,2′-bpy), 4,4′-bipyridine (4,4′-bpy) or 1,10-phenanthroline (phen) were also obtained. The complexes have been characterized by microanalysis, mass spectrometry, EPR, IR and UV-Vis spectroscopies, as well as DFT calculations. The ligand H2L1 and the compounds [CuL1(H2O)]·…

research product

Mixed-ligand copper(ii)–sulfonamide complexes: effect of the sulfonamide derivative on DNA binding, DNA cleavage, genotoxicity and anticancer activity

Four ternary complexes, [Cu(L1)2(bipy)] (1) [HL1 = N-(6-chlorobenzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide], [Cu(L2)2(bipy)] (2) [HL2 = N-(benzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide], [Cu(L3)2(bipy)]·1/2H2O (3) [HL3 = N-(5,6-dimethylbenzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide] and [Cu(L4)2(bipy)] (4) [HL4 = N-(5,6-dimethylbenzo[d]thiazol-2-yl)benzenesulfonamide], were prepared and then characterized by X-ray crystallography, spectroscopy and magnetic measurements. Whereas the molecular structure of 1 and 2 consists of a discrete monomeric copper(II) species with a distorted square planar geometry, that of 3 and 4 consists of two independent molecules. In 3, both molecules pre…

research product

New sulfonamide complexes with essential metal ions [Cu (II), Co (II), Ni (II) and Zn (II)]. Effect of the geometry and the metal ion on DNA binding and nuclease activity. BSA protein interaction.

Abstract Mixed divalent Cu, Co, Ni and Zn complexes containing the new sulfonamide ligand N–(2–(pyridin–2–yl)ethyl)quinoline–8–sulfonamide (HQSEP) were prepared and characterized by physico-chemical techniques. The tetracoordinate [Cu(QSEP)X] [X = Br (1), Cl (2)] compounds present a seesaw geometry (τ4 = 0.56 (1) and 0.50 (2)). The Cu(II) in the [Cu(QSEP)(NO3)(MeOH)] (3) complex is five coordinate with a slightly distorted SP geometry (τ = 0.11). The [M(QSEP)(benz)] [M = Cu(II) (4), Ni(II) (5), Co(II) (6) and Zn(II) (7); benz = benzoate] compounds are configurationally isotypic. The coordination geometries of the M(II) ions can be best described as distorted SP (τ = 0.29, 0.15, 0.34 and 0.1…

research product

Double asymmetric intramolecular aza-Michael reaction: a convenient strategy for the synthesis of quinolizidine alkaloids.

A new methodology to access the quinolizidine skeleton in an asymmetric fashion was devised. It involves two consecutive intramolecular aza-Michael reactions of sulfinyl amines bearing a bis-enone moiety, in turn generated by a monodirectional cross metathesis reaction. The sequence, which takes place with excellent yields and diastereocontrol, was applied to the total synthesis of alkaloids lasubine I and myrtine.

research product

Synthesis of substituted piperidines by enantioselective desymmetrizing intramolecular aza-Michael reactions.

An organocatalytic enantioselective intramolecular aza-Michael reaction has been described for the first time in a desymmetrization process employing substrates different from cyclohexadienones. By using 9-amino-9-deoxy-epi-hydroquinine as the catalyst and trifluoroacetic acid as a co-catalyst, a series of enantiomerically enriched 2,5-and 2,6-disubstituted piperidines have been obtained in good yields and with moderate diastereoselectivity. Depending on the catalyst/co-catalyst loading ratio, either the major or the minor diastereoisomer of the final piperidine products was achieved with high levels of enantioselectivity. Finally, some mechanistic insights have been considered by means of …

research product

Organocatalytic enantioselective synthesis of 2,5,5-trisubstituted piperidines bearing a quaternary stereocenter. Vinyl sulfonamide as a new amine protecting group

An organocatalytic desymmetrizing intramolecular aza-Michael reaction with vinyl sulfonamides as nucleophilic nitrogen source has been devised for the synthesis of a new family of 2,5,5-trisubstituted piperidines bearing a quaternary sterocenter. The process takes place with excellent levels of enantioselectivity and moderate to good diastereoselectivity. The vinyl sulfonamide moiety can be removed by means of an ozonolysis reaction.

research product