0000000000067821
AUTHOR
Patrizia Tarugi
Characterization of a mutant form of human apolipoprotein B (Thr26_Tyr27del) associated with familial hypobetalipoproteinemia
We have previously identified a deletion mutant of human apoB [apoB (Thr26_Tyr27del)] in a subject with primary hypobetalipoproteinemia. The present study determined the effect of Thr26_Tyr27del mutation on apoB secretion using transfected McA-RH7777 cells. Transient or stable transfection of apoB-48 containing the Thr26_Tyr27del mutation showed drastically reduced secretion of the mutant as compared to wild-type apoB-48. No lipoproteins containing the mutant apoB-48 were secreted into the medium. Incubation of transfected cells in a lipid-rich medium in the presence of cycloheximide showed rapid turnover of cell-associated mutant apoB-48 as compared to that of wild-type apoB-48. Immunofluo…
Familial HDL deficiency due to ABCA1 gene mutations with or without other genetic lipoprotein disorders
Mutations in ABCA1 have been shown to be the cause of Tangier disease (TD) and some forms of familial hypoalphalipoproteinemia (HA), two genetic disorders characterized by low plasma HDL levels. Here we report six subjects with low HDL, carrying seven ABCA1 mutations, six of which are previously unreported. Two mutations (R557X and H160FsX173) were predicted to generate short truncated proteins; two mutations (E284K and Y482C) were located in the first extracellular loop and two (R1901S and Q2196H) in the C-terminal cytoplasmic domain of ABCA1. Two subjects found to be compound heterozygotes for ABCA1 mutations did not have overt clinical manifestations of TD. Three subjects, all with prema…
Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia.
Patients homozygous or Compound heterozygous for LDLR mutations or double heterozygous for LDLR and apo B R3500Q mutation have higher LDL-C levels. more extensive xanthomatosis and more severe premature coronary disease (pCAD) than simple heterozygotes for mutations in either these genes or for missense mutations in PCSK9 gene. It is not known whether combined mutations in LDLR and PKCS9 are associated with such a severe phenotype. We sequenced Apo B and PCSK9 genes in two patients with the clinical diagnosis of homozygous FH who were heterozygous for LDLR gene mutations. Proband Z.P. (LDL-C 13.39 mmol/L and pCAD) was heterozygous for an LDLR mutation (p.E228K) inherited from her father (LD…
Homozygous familial hypercholesterolemia in Italy: Clinical and molecular features
Abstract Background and aims Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder characterized by extremely elevated plasma levels of low density lipoprotein cholesterol (LDL-C) and high risk of premature atherosclerotic cardiovascular disease (ASCVD). HoFH is caused by pathogenic variants in several genes, such as LDLR, APOB and PCSK9, responsible for autosomal dominant hypercholesterolemia (ADH), and LDLRAP1 responsible for autosomal recessive hypercholesterolemia (ARH). Aim of this study was the review of the clinical and molecular features of patients with HoFH identified in Italy from 1989 to 2019. Methods Data were collected from lipid clinics and laboratories, …
Molecular diagnosis of hypobetalipoproteinemia: an ENID review.
Abstract Primary hypobetalipoproteinemia (HBL) includes a group of genetic disorders: abetalipoproteinemia (ABL) and chylomicron retention disease (CRD), with a recessive transmission, and familial hypobetalipoproteinemia (FHBL) with a co-dominant transmission. ABL and CRD are rare disorders due to mutations in the MTP and SARA2 genes, respectively. Heterozygous FHBL is much more frequent. FHBL subjects often have fatty liver and, less frequently, intestinal fat malabsorption. FHBL may be linked or not to the APOB gene. Most mutations in APOB gene cause the formation of truncated forms of apoB which may or may be not secreted into the plasma. Truncated apoBs with a size below that of apoB-3…
Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia.
Background: Monogenic hypertriglyceridemia (HTG) may result from mutations in some genes which impair the intravascular lipolysis of triglyceride (TG)-rich lipoproteins mediated by the enzyme Lipoprotein lipase (LPL). Mutations in the LPL gene are the most frequent cause of monogenic HTG (familial chylomicronemia) with recessive transmission. Methods: The LPL gene was resequenced in 149 patients with severe HTG (TG>10mmol/L) and 106 patients with moderate HTG (TG>4.5 and <10mmol/L) referred to tertiary Lipid Clinics in Italy. Results: In the group of severe HTG, 26 patients (17.4%) were homozygotes, 9 patients (6%) were compound heterozygotes and 15 patients (10%) were simple heter…
Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC)
PubMed: 30270054
Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia
: Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause …
Genetics of familial hypobetalipoproteinemia
Primary hypobetalipoproteinemias include three monogenic disorders: the relatively frequent codominant familial hypobetalipoproteinemia (FHBL), the rare recessive conditions abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD). Approximately 50% of FHBL patients are carriers of mutations in the APOB gene, mostly causing the formation of truncated forms of ApoB. In some kindred, FHBL is linked to a locus on chromosome 3 (3p21), but the candidate gene is still unknown. Recently, a FHBL-like phenotype was observed in carriers of mutations of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene causing loss-of-function of the encoded protein, a proprotein convertase tha…
Clinical and biochemical characteristics of individuals with low cholesterol syndromes: A comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia.
Background The most frequent monogenic causes of low plasma cholesterol are familial hypobetalipoproteinemia (FHBL1) because of truncating mutations in apolipoprotein B coding gene (APOB) and familial combined hypolipidemia (FHBL2) due to loss-of-function mutations in ANGPTL3 gene. Objective A direct comparison of lipid phenotypes of these 2 conditions has never been carried out. In addition, although an increased prevalence of liver steatosis in FHBL1 has been consistently reported, the hepatic consequences of FHBL2 are not well established. Methods We investigated 350 subjects, 67 heterozygous carriers of APOB mutations, 63 carriers of the p.S17* mutation in ANGPTL3 (57 heterozygotes and …
Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study
Abstract Background Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). Methods We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major…
Novel mutations of CETP gene in Italian subjects with hyeralphalipoproteinemia
Abstract Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that catalyses the transfer of cholesteryl esters from HDL to the other plasma lipoproteins. Genetic deficiency of CETP is one of the known causes of elevation of plasma HDL-C (primary hyperalphalipoproteinemia, HALP). We sequenced CETP gene in a group of 24 Italian subjects with primary HALP (HDL-C>80 mg/dl) suspected to have CETP deficiency. Two unrelated subjects both coming from the same geographical district, were found to be heterozygous for a nucleotide substitution in exon 6 (c.544C>T) and another subject was found to be heterozygous for a C>T transition in exon 9 (c.802C>T). Both mutations introduce a prema…
A Novel Loss of Function Mutation of PCSK9 Gene in White Subjects With Low-Plasma Low-Density Lipoprotein Cholesterol
Objectives— The PCSK9 gene, encoding a pro-protein convertase involved in posttranslational degradation of low-density lipoprotein receptor, has emerged as a key regulator of plasma low-density lipoprotein cholesterol. In African-Americans two nonsense mutations resulting in loss of function of PCSK9 are associated with a 30% to 40% reduction of plasma low-density lipoprotein cholesterol. The aim of this study was to assess whether loss of function mutations of PCSK9 were a cause of familial hypobetalipoproteinemia and a determinant of low-plasma low-density lipoprotein cholesterol in whites. Methods and Results— We sequenced PCSK9 gene in 18 familial hypobetalipoproteinemia subjects and i…
Corrigendum to "Molecular diagnosis of hypobetalipoproteinemia: An ENID review" [Atherosclerosis 195 (2) (2007) 19-27].
Novel LMF1 nonsense mutation in a patient with severe hypertriglyceridemia
Context: Lipase maturation factor 1 (LMF1) gene is a novel candidate gene in severe hypertriglyceridemia. Lmf1 is involved in the maturation of lipoprotein lipase (LPL) and hepatic lipase in endoplasmic reticulum. To date only one patient with severe hypertriglyceridemia and related disorders was found to be homozygous for a nonsense mutation in LMF1 gene (Y439X).Objective: The objective of the study was to investigate LMF1 gene in hypertriglyceridemic patients in whom mutations in LPL, APOC2, and APOA5 genes had been excluded.Results: The resequencing of LMF1 gene led to the discovery of a novel homozygous nonsense mutation in one patient with severe hypertriglyceridemia and recurrent epis…
Microsomal triglyceride transfer protein gene mutations in Turkish children: A novel mutation and clinical follow up.
Abetalipoproteinemia (ABL; OMIM 200100) is a rare autosomal recessive disease that affects the absorption of dietary fats and fat soluble vitamins. Here, we describe the clinical and genetic characteristics of three patients with ABL. Two patients (patients 1 and 2) who were carriers of the c.398-399delAA mutation (previously known mutation) had developmental delay and hepatic steatosis developed at the age of five in patient 1. Patient 3 was the carrier of a novel mutation (g.10886-10902delAAGgtaagtttgtgttg in intron 3 and c.506A>T exon 5) in microsomal triglyceride transfer protein (MTP) gene and had hepatic steatosis.
Hypobetalipoproteinemia
Hypobetalipoproteinemias (HBL) represent a heterogeneous group of disorders characterized by reduced plasma levels of total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C) and apolipoprotein B (apoB) below the 5th percentile of the distribution in the population. HBL are defined as primary or secondary according to the underlying causes. Primary monogenic HBL are caused by mutations in several known genes (APOB, PCSK9, MTP, SARA2) or mutations in genes not yet identified. Familial hypobetalipoproteinemia (FHBL) is the most frequent monogenic form of HBL with a dominant mode of inheritance. It may be due to loss-of-function mutations in APOB or, less frequently, in PCSK9 genes.…
A Novel APOB Mutation Identified by Exome Sequencing Cosegregates With Steatosis, Liver Cancer, and Hypocholesterolemia
Objective— In familial hypobetalipoproteinemia, fatty liver is a characteristic feature, and there are several reports of associated cirrhosis and hepatocarcinoma. We investigated a large kindred in which low-density lipoprotein cholesterol, fatty liver, and hepatocarcinoma displayed an autosomal dominant pattern of inheritance. Approach and Results— The proband was a 25-year-old female with low plasma cholesterol and hepatic steatosis. Low plasma levels of total cholesterol and fatty liver were observed in 10 more family members; 1 member was affected by liver cirrhosis, and 4 more subjects died of either hepatocarcinoma or carcinoma on cirrhosis. To identify the causal mutation in this f…
Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia.
Objective— Mutations of the ANGPTL3 gene have been associated with a novel form of primary hypobetalipoproteinemia, the combined hypolipidemia (cHLP), characterized by low total cholesterol and low HDL-cholesterol levels. The aim of this work is to define the role of ANGPTL3 gene as determinant of the combined hypolipidemia phenotype in 2 large cohorts of 913 among American and Italian subjects with primary hypobetalipoproteinemia (total cholesterol <5th percentile). Methods and Results— The combined hypolipidemia cut-offs were chosen according to total cholesterol and HDL-cholesterol levels reported in the ANGPTL3 kindred described to date: total cholesterol levels, <2nd percentile …
Familial combined hypolipidemia due to mutations in the ANGPTL3 gene
The role of ANGPTL3 in lipoprotein metabolism emerged from studies in a mutant mouse strain characterized by severe hypotriglyceridemia and carrying a loss-of-function (LOF) mutation of the ANGPTL3 gene. ANGPTL3 was found to inhibit lipoprotein lipase and endothelial lipase. Genome-wide association studies in humans demonstrated the association of ANGPTL3 variants with plasma triglyceride levels and LOF mutations of ANGPTL3 were found in hypotriglyceridemic subjects in population studies. Recently, individuals originally classified as affected by familial hypobetalipoproteinemia were found to be homozygotes/compound heterozygotes for rare LOF mutations of ANGPTL3. They show a striking reduc…
Threshold Effects of Circulating Angiopoietin-Like 3 Levels on Plasma Lipoproteins.
Abstract Context Angiopoietin-like 3 (ANGPTL3) deficiency in plasma due to loss-of-function gene mutations results in familial combined hypobetalipoproteinemia type 2 (FHBL2) in homozygotes. However, the lipid phenotype in heterozygotes is much milder and does not appear to relate directly to ANGPTL3 levels. Furthermore, the low-density lipoprotein (LDL) phenotype in carriers of ANGPTL3 mutations is unexplained. Objective To determine whether reduction below a critical threshold in plasma ANGPTL3 levels is a determinant of lipoprotein metabolism in FHBL2, and to determine whether proprotein convertase subtilisin kexin type 9 (PCSK9) is involved in determining low LDL levels in this conditio…
Association between familial hypobetalipoproteinemia and the risk of diabetes. Is this the other side of the cholesterol-diabetes connection? A systematic review of literature.
Statin therapy is beneficial in reducing LDL cholesterol (LDL-C) levels and cardiovascular events, but it is associated with the risk of incident diabetes mellitus (DM). Familial hypercholesterolemia (FH) is characterized by genetically determined high levels of plasma LDL-C and a low prevalence of DM. LDL-C levels seem then inversely correlated with prevalence of DM. Familial hypobetalipoproteinemia (FHBL) represents the genetic mirror of FH in terms of LDL-C levels, very low in subjects carrying mutations of APOB, PCSK9 (FHBL1) or ANGPTL3 (FHBL2). This review explores the hypothesis that FHBL might represent also the genetic mirror of FH in terms of prevalence of DM and that it is expecte…
Mutations in MTP gene in abeta- and hypobeta-lipoproteinemia.
Abstract Familial hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL) are inherited disorders of apolipoprotein B (apo B)-containing lipoproteins that result from mutations in apo B and microsomal triglyceride transfer protein (MTP) genes, respectively. Here we report three patients with severe deficiency of plasma low-density lipoprotein (LDL) and apo B. Two of them (probands F.A. and P.E.) had clinical and biochemical phenotype consistent with ABL. Proband F.A. was homozygous for a minute deletion/insertion (c.1228delCCCinsT) in exon 9 of MTP gene predicted to cause a truncated MTP protein of 412 amino acids. Proband P. E. was heterozygous for a mutation in intron 9 (IVS9-1G>A),…
CLINICAL CHARACTERISTICS AND PLASMA LIPIDS IN SUBJECTS WITH FAMILIAL COMBINED HYPOLIPIDEMIA: A POOLED ANALYSIS
Background. Angiopoietin-like 3 (ANGPTL3) regulates lipoprotein metabolism by modulating extracellular lipases. Loss-of function mutations in ANGPTL3 gene cause familial combined hypolipidemia (FHBL2). The mode of inheritance and hepatic and vascular consequences of FHBL2 have not been fully elucidated. To get further insights on these aspects, we re-evaluated the clinical and the biochemical characteristics of all reported cases of FHBL2. Methods and Results. One hundred fteen FHBL2 individuals carrying 13 different mutations in the ANGPTL3 gene (14 homozygotes, 8 compound heterozygotes and 93 heterozygotes) and 402 controls were considered. Carriers of 2 mutant alleles had undetectable pl…
Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN)
Background and aims: Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network). Methods: Observational, multicenter, retrospective and prospective study involving about 40 Italian clinical centers. Genetic testing of the appropriate candidate genes at one of six molecular diagnostic laboratories serving as nationw…
Worldwide experience of homozygous familial hypercholesterolaemia:retrospective cohort study
[Background]: Homozygous familial hypercholesterolaemia (HoFH) is a rare inherited disorder resulting in extremely elevated low-density lipoprotein cholesterol levels and premature atherosclerotic cardiovascular disease (ASCVD). Current guidance about its management and prognosis stems from small studies, mostly from high-income countries. The objective of this study was to assess the clinical and genetic characteristics, as well as the impact, of current practice on health outcomes of HoFH patients globally.
Lipid and apoprotein composition of HDL in partial or complete CETP deficiency
Hyperalphalipoproteinemia, as observed in patients who are either homozygous or heterozygous for cholesteryl ester transfer protein (CETP) deficiency, has been shown to be associated with striking changes in apolipoprotein size distribution, namely, of high-density lipoprotein (HDL) and HDL-like particles. We compared the effect of varying degrees of CETP activity on the HDL apolipoprotein profile in Caucasian CETP-deficient subjects and following pharmacological decrease in CETP activity, using Size Exclusion Chromatography followed by Reverse Phase Protein Array (SEC RPA). The main HDL-associated apolipoproteins (Apo), i.e. ApoA-I, ApoA-II, ApoC-I, and ApoC-III, co-eluted with the HDL pea…
Plasma non-cholesterol sterols in primary hypobetalipoproteinemia
Primary hypobetalipoproteinemia (pHBL) is characterized by plasma cholesterol levels ApoB48, and FHBL harbouring as yet unknown molecular defects. Not linked FHBL kindred are not homogeneous in terms of plasma NCS levels. NCS cannot replace genetic HBL analysis.
Exome sequencing in suspected monogenic dyslipidemias.
Background— Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We used this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. Methods and Results— We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein cholesterol (after candidate gene sequencing excluded known genetic causes for high low-density lipoprotein cholesterol families) or high-density lipoprotein cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual to account for their burden of commo…